Metabotropic Glutamate Receptors

Molecular Pharmacology

Francine C Acher

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601-CNRS, Université René Descartes-Paris V, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France. E-mail: Francine.Acher@univ-paris5.fr

Francine C Acher is currently a CNRS Research Director within the Biomedical Institute of University Paris-V (France). Her research focuses on structure/function studies and drug discovery using chemical tools (synthetic chemistry, molecular modeling), molecular biology and pharmacology within interdisciplinary collaborations.

Introduction

Glutamate is the major excitatory amino acid transmitter in the brain. It is released from presynaptic vesicles and activates postsynaptic ligand-gated ion channel receptors (NMDA, AMPA and kainate receptors) to secure fast synaptic transmission.¹ Glutamate also activates metabotropic glutamate (mGlu) receptors, which modulate its release, postsynaptic response, as well as the activity of other synapses.^{2,3} Glutamate has been shown to be involved in many neuropathologies such as anxiety, pain, ischemia, Parkinson's disease, epilepsy and schizophrenia. Thus, because of their modulating properties, mGlu receptors are recognized as promising therapeutic targets.⁴ It is expected that drugs acting at mGlu receptors will regulate the glutamatergic system without affecting the normal synaptic transmission.

mGlu receptors are G-protein-coupled receptors (GPCRs). Eight subtypes have been identified and classified into three groups (I-III) based upon sequence homology, transduction mechanism and pharmacological profile (see Figure 1). Group I includes mGlu₁ and mGlu₅ receptors, which couple to G_q and activate phospholipase C (PLC). Group II (mGlu₂, mGlu₃) and group III (mGlu₄, mGlu₆, mGlu₇ and mGlu_8) receptors couple to $G_i/G_{\scriptscriptstyle O}$ and inhibit adenylyl cyclase (AC). Group I receptors are mostly located postsynaptically, thus their activation increases excitability. On the other hand, group II/ III receptors are generally presynaptic and their activation reduces glutamate release. Specific ligands have been found for each group and some of the subtypes, as described hereafter.^{5,6}

mGlu receptors belong to family 3 of the GPCR superfamily.⁷ Similar to all GPCRs, mGlu receptors contain a heptahelical domain (HD) in the membrane region. In addition, like all members of family 3, mGlu receptors are characterized by a large extracellular amino terminal domain (ATD) where

Figure 1 | Classification of the 8 Subtypes of mGlu Receptors Sequence similarity Group Transduction

the glutamate binding site is found (see Figure 3). This domain adopts a bilobate structure similar to LIVBP (Leucine Isoleucine Valine Binding Protein), a bacterial periplasmic protein involved in the transport of hydrophobic amino acids;8-10 these amino acids bind to an open conformation of the protein, which closes subsequently to trap them in between the two lobes. A similar binding mode has been proposed for glutamate and competitive agonists in the LIVBP domain (LIVBPD) of mGlu receptors. Moreover, it was shown that the closed conformation of this domain is required for receptor activation.¹¹ Examination of the glutamate binding site in the eight mGlu receptor subtype crystal structures (mGlu₁)¹⁰ or homology models¹²⁻¹⁶ reveals a common binding motif for the α -amino and α -carboxylic functions of glutamate,¹⁷ while residues that bind the distal γ -carboxylate vary

Figure 2 | Competitive mGlu Receptor Ligand Structures

Agonists are shown in turquoise Antagonists are shown in dark blue

(Bold Text Denotes Compounds Available From Tocris)

from one subtype to another.¹⁴ Thus, not surprisingly, all competitive agonists are α -amino acids, bearing various selective functional groups on their side chain⁶ (see Figure 2). The first generation of orthosteric ligands was followed by a second generation of allosteric modulators that bind in the HD.¹⁸ The first molecule described as a non-competitive mGlu antagonist was CPCCOEt in the late nineties.¹⁹ Since then, numerous allosteric modulators have been

The purpose of the present article is to review our actual knowledge of the pharmacology of mGlu receptors. Several detailed reviews^{2,3,5,6} have been published; thus only the most potent and selective known ligands will be presented and emphasis will be placed on compounds that were recently disclosed.

discovered by high-throughput screening (HTS) in

Competitive Ligands

pharmaceutical companies.²⁰⁻²²

An α -amino acid moiety can be found in all mGlu receptor competitive ligands (agonists and antagonists) and most of the side chains hold an acidic function. In the ligand active conformations, the spatial disposition of these functional groups is that of glutamate in an extended conformation, as predicted by pharmacophore²³ and homology models.¹⁴ For many years these compounds have

Figure 3 | Schematic Representation of an mGlu Receptor: the Two Orthosteric and Allosteric Binding Sites are Indicated

been considered as valuable research tools, but not as drug candidates, because of their poor LogP, related to their highly polar chemical structures. Jim Monn and colleagues from Eli Lilly were the first to show that such a glutamate analog, LY 354740, was able to pass the biological barriers and thus be orally active as an anticonvulsant and anxiolytic.²⁴ Moreover, such drugs are poorly metabolized as they are already quite hydrophilic²⁵ and few side effects are predicted. Other glutamate analogs were also shown to be systemically active: (2R,4R)-APDC, (S)-DCPG, 3'Me-CCG, 3'HM-CCG and ACPT-I (Figure 2). Desensitization was also feared with continuous activation in the case of group II/III receptors, yet little was observed after several days of agonist activation. Altogether these results promote a renewed interest in mGlu receptor competitive ligands.

Agonists (Table 1 and Figure 2)

The first agonist that was able to discriminate between ionotropic and metabotropic glutamate receptors was *trans*-ACPD (1*S*,3*R* isomer).²⁶ The ligand contributed considerably to the study of metabotropic glutamate receptors despite its lack of subtype selectivity.^{2,3,5} A limited number of molecules possess agonist activity across all mGlu receptors. The endogenous agonist L-glutamate, L-CCG-I and ABHxD-I are the most potent.^{2,3,5} It can be noted that L-CCG-I and ABHxD-I are conformationally constrained and mimic the bioactive extended glutamate conformation.²³ Selectivity can be gained by adding new chemical groups onto these structures.

Group I

Quisqualate (Quis) is the most potent group I agonist. However, it also activates AMPA receptors, thus its use is restricted. The most popular group I selective agonist is (*S*)-3,5-DHPG, yet it exhibits only moderate potency.^{2,3,5} CHPG²⁷ and *Z*/*E*-CBQA²⁸ have been claimed to specifically activate mGlu₅ receptors, although the affinity of the former is quite low. To date, no specific mGlu₁ competitive agonists have been disclosed.

Group II

LY 354740 was the first mGlu agonist reported to exhibit a nanomolar affinity.²⁴ It is group II selective, as are its oxy (LY 379268) and thia (LY 389795) derivatives.²⁹ The introduction of a fluorine atom at position 3 (MGS0008) or 6 (LY 354740-6F) retained the potent activity, which was even enhanced when a carbonyl group was added, as in the case of MGS0028.³⁰ This series of bicyclic glutamate analogs was derived from the general agonist L-CCG-I, where increased potency and group II selectivity was gained through the second hydrocarbon ring. However, it was recently shown that a methyl or hydroxymethyl substituent in the 3' position (3'Me-CCG and 3'HM-CCG) provided agonists with similar potency.^{31,32} Replacement of the hydroxyl functionality at C3' of 3'HM-CCG, by a sulfydryl results in decreased affinity at mGlu_{2/3}. Interestingly, this analog (3'SM-CCG) remains an mGlu₂ agonist but is a full antagonist at mGlu₃.³³ A similar selectivity was also reported for the C4_β-methyl-substituted analog of LY 354740³⁴. These two compounds selectively activate mGlu₂, while NAAG is the only

reported $mGlu_3$ competitive agonist to discriminate between the two group II subtypes. Other group II selective agonists have been described with submicromolar affinity: (2*R*,4*R*)-APDC and DCG IV.

Group III

Most of the potent group III selective agonists bear a diacidic side chain, which can interact with the highly

basic distal binding pocket.^{14,16} (S)-AP4 (L-AP4), (S)-SOP(L-SOP) and (1*S*,2*R*)-APCPr^{35,36} are the most potent, displaying submicromolar affinities at cloned receptors, except for mGlu₇, to which all bind with weak affinity. (S)-PPG,^{37,38} (S)-3,4-DCPG,³⁹ ACPT-I and (+)-ACPT-III⁴⁰ have also been described as micromolar agonists. Interestingly, a CCG derivative bearing a hydroxymethyl group in the 3' position

Receptor		Group I		Group II		Group III				
		mGlu₁	mGlu₅	mGlu₂	mGlu₃	mGlu₄	mGlu ₆	mGlu ₇	mGlu _s	
Non- selective agonists	L-Glu ^{c,d}	1-13	3-11	0.3-12	2-9	3-17	5-38	2300	8-10	
	L-CCG-I ^{c,d}	2	3	0.5	0.4	9	6	230	3	
	ABHxD-I ^{c,d}	2	0.7	0.3	2	23	5	-	_	
	(1 <i>S</i> ,3 <i>R</i>)-ACPD ^{c,d}	5-80	5-40	7-18	6-17	100-1000	300	n.e.	45-166	
Group I subtype- selective agonists	Quis ^{c,d}	0.03-3	0.02-0.3	100-1000	40-220	100-1000	n.e	n.e	720	
	(S)-3,5-DHPG ^{c,d}	6	2	n.e.	n.e.	n.e.	_	n.e.	n.e.	
	CHPG°	> 10000	750	_	_	-	_	-	_	
	Z-CBQA°	> 1000	11	> 100	_	> 100	_	_	_	
Group II subtype- selective agonists	LY 354740 ^{b,c}	> 100	> 100	0.01	0.04	> 100	3	> 100	12	
	LY 379268 ^{b,c}	> 100	> 100	0.003	0.005	21	0.4	> 100	2	
	LY 389795 ^{b,c}	> 100	> 100	0.004	0.008	> 100	2	> 100	7	
	MGS0008 ^e	> 100	> 100	0.029	0.049	> 100	> 100	> 100	-	
	LY 354740-6F ^e	> 100	> 100	0.017	0.081	> 100	> 100	> 100	-	
	MGS0028 ^e	> 100	> 100	0.0006	0.0021	> 100	> 100	> 100	-	
	3'Me-CCG ^f	> 100	> 100	0.008	0.038	> 100	1.198	> 100	1.32	
	(+)-3´HM-CCG ^g	> 100	> 100	0.004	0.007	1.8	0.147	> 100	0.010	
	2R,4R-APDC ^{b,c}	> 100	> 100	0.4	0.4	> 300	110	> 300	> 100	
	DCG IV ^{c,d}	ant.	ant.	0.1-0.4	0.1-0.2	ant.	ant.	ant.	ant.	
	NAAG ^{c,d}	> 300	> 300	134-1000	10-65	> 300	> 300	-	-	
Group III subtype- selective agonists	(S)-AP4 ^{c,d}	> 1000	> 1000	> 1000	> 1000	0.2-1.2	0.6-0.9	160-500	0.06-0.9	
	(S)-SOP ^{c,d}	n.e.	n.e.	ant.	ant.	1-4	3	160-1200	2	
	(1 <i>S</i> ,2 <i>R</i>)-APCPr ^h	-	-	-	-	0.6	1.9	602	0.3	
	ACPT-I ^{c,d,i}	ant.	-	n.e.	-	6.5	18.4	-	10.1	
	(+)-ACPT-III ^{c,d,i}	_	_	_	_	8.8	19.2	_	7.0	
	(S)-PPG ^{b,j}	> 500	> 500	> 300	> 200	3.2 (5.2)	(4.7)	48 (185)	(0.21)	
	(S)-HomoAMPA [◦]	> 1000	> 1000	> 1000	_	> 1000	58	> 5000	_	
	BnAPDC°	> 1000	ant.	ant.	> 100	> 300	20	-	> 300	
	(S)-3,4-DCPG ^{b,k}	ant.	> 100	> 100	> 100	8.8	3.6	> 100	0.031	

Table 1 | Potencies of Selective and Non-selective mGlu Receptor Agonists^a

(Bold Text Denotes Compounds Available From Tocris)

 ${}^{a}\text{EC}_{50}$ or K_b values (μ M) measured with rat or human (when indicated^b) cloned receptors. ant. = antagonist; n.e. = no effect. References for agonist potencies that have been cited in reviews ⁵ and/or ⁶ are referred to as such. ${}^{b}\text{EC}_{50}$ or K_b values (μ M) obtained with human mGlu receptors.

^cSchoepp *et al* (1999)⁵ ^dPin *et al* (1999)⁶ ^eNakazato *et al* (2000)³⁰ ^fCollado *et al* (2002)³¹ ^gCollado *et al* (2004)³² ^hKroona *et al* (1991)³⁵ Sibille *et al* (unpublished results) ^jGasparini *et al* (1999)³⁷ and (2000);³⁸ data in parentheses refer to (±)-PPG³⁷ ^kThomas *et al* (2001)³⁹

(3'HM-CCG) displays similar affinity for mGlu₈ and mGlu_{2/3} receptors.³² Again, very few compounds are subtype-selective: *N*-benzyl-APDC (BnAPDC)⁴¹ and (*S*)-homoAMPA⁴² at mGlu₆; (*S*)-3,4-DCPG at mGlu₈, with an EC₅₀ over two orders of magnitude lower than at other group III receptors.³⁹ Very recently Faust Pharmaceuticals discovered a selective mGlu₄ agonist (FP429) in the APTC family.⁴³

Antagonists (Table 2 and Figure 2)

Most of the competitive antagonists prevent the complete closing of the two lobes of the LIVBP domain. Substitution of the α -proton of glutamate analogs by a methyl group as in MCCG, MCPG and MAP4, or a bulkier group as in LY 341495, turns the corresponding agonists (4CPG, AP4 and L-CCG-I) into antagonists. However, agonist properties can be recovered when residues responsible for the hindrance are mutated.¹¹ Closing can also be disturbed by ionic repulsion as in the case of ACPT-II.¹¹

Group I

The first generation of group I mGlu antagonists was composed of 4-carboxyphenylglycine derivatives, such as (*S*)-MCPG, which has been widely used. Its

affinity was improved when the α -methyl group was changed to α -thioxanthylmethyl, as in LY 367366, but this derivative is also able to antagonize group II/III receptor activation.⁵ The highest potency was then found with α -substituted 3-carboxycyclobutylglycines such as LY 393675 (cis isomer) and its trans isomer⁵ or a cis/trans mixture (LY 393053).44 This latter mixture was shown to be systemically active and inhibit both mGlu₁ and mGlu₅, as well as activate other group II/III mGlu receptors.⁴⁴ Although slightly less potent, LY 367385 (4C2MPG) and LY 339840 (4C3H2MPG) display subtype 1 selectivity.45 However, LY 367385 was also shown to inhibit the cystine/glutamate exchanger.46 No mGlu₅ selective and competitive antagonists have been described.

Group II

As most potent group II agonists are derived from L-CCG-I, the most potent group II antagonists are obtained when aryl substituents are introduced in specific positions of that glutamate analog. Thus

Receptor		Group I		Group II		Group III			
		mGlu₁	mGlu₅	mGlu ₂	mGlu₃	mGlu₄	mGlu₀	mGlu ₇	mGlu₅
	LY 341495 ^{b,c,i}	6.8-9.7	8.2	0.021	0.014	2.6-22	1.1-1.8	0.99	0.17
Non-selective	LY 393053 ^{b,e}	1.0	1.6	3.0	_	> 100	_	20	3.0
unugomoto	ACPT-II ^d	115	_	88	_	77	-	_	123
	LY 367385 ^{b,f}	8.8	> 300	> 300	_	> 300	-	-	_
Group I	LY 367366 ^{b,c}	6.6	5.6	-	-	-	-	-	-
antagonists	LY 339840 ^{b,f}	7.5	140	> 300	-	> 300	-	_	_
_	(S)-MCPG ^{c,d}	40-320	195-460	15-340	300-1000	> 1000	> 100	> 1000	> 300
	ADED ^{b,c}	> 300	> 300	18	6.1	> 300	-	> 300	> 300
	(S)-BnQuis ^{b,c}	300	300	7.1	_	n.e.	n.e	_	_
Group II	mCD-CCG ⁹	43	49	0.007	0.010	_	-	-	1.8
subtype-selective	HYDIA ^h	> 100	> 100	0.105	0.102	22	-	-	15
antagonists	MSG0039 ⁱ	> 100	-	0.020	0.024	1.7	2.1	-	-
	NMAPDC ^{b,c}	> 300	> 300	20	8.6	> 300	-	-	> 300
	XE-CCG ^{b,j}	_	_	0.20	0.075	-	-	_	-
	DCG IV ^d	390	630	ago.	ago.	22	40	25-40	15-32
Group III	MAP4 ^{c,d}	n.e.	-	500	-	90-190	-	-	25-105
antagonists	CPPG ^{b,c,k}	-	-	_	_	12	4	17	11
_	MPPG ^{c,d}	> 1000	n.e.	11-320	-	54-110	480	300	20-50

Table 2 | Potencies of Selective and Non-selective mGlu Receptor Competitive Antagonists^a

(Bold Text Denotes Compounds Available From Tocris)

 a_{50} or K_b values (μ M) measured with rat or human (when indicated^b) cloned receptors. ago. = agonist; n.e. = no effect. References for antagonist potencies that have been cited in reviews ⁵ and/or ⁶ are referred to as such.

 ${}^{b}\text{IC}_{50}$ or K_{b} values (µM) obtained with human mGlu receptors.

^cSchoepp *et al* (1999)⁵ ^dPin *et al* (1999)⁶ ^eChen *et al* (2000)⁴⁴ ^fKingston *et al* (2002)⁴⁵ ^gSørensen *et al* (2003)⁴⁸ ^hAdam *et al* (1999)⁵¹ ^lChaki *et al* (2004)⁴⁹ ^jPellicciari *et al* (2001)⁴⁷ ^kConway *et al* (2001);⁵² Naples and Hampson (2001);¹¹⁷ Wright *et al* (2000)⁵⁴

YM 298198, Selective mGlu₁ Antagonist

YM 298198 Cat. No. 2448

YM 298198 is a newly characterized, non-competitive antagonist with high affinity and selectivity for mGlu₁ receptors (K_i = 19 nM). The compound is inactive at other mGlu receptor subtypes (mGlu₂₋₇), ionotropic receptors and glutamate transporters at concentrations up to 10 μ M. YM 298198 inhibits glutamate-induced IP production more potently than CPCCOEt (IC₅₀ values are 16 nM and 6.3 μ M respectively), and is orally active *in vivo*, demonstrating an antinociceptive effect in hyperalgesic mice.

Kohara et al (2005) Radioligand binding properties and pharmacological characterization of 6-Amino-*N*-cyclohexyl-*N*,3-dimethyl-thiazolo[3,2-a]-benzimidazole-2-carboxamide (YM-298198), a high-affinity, selective and noncompetitive antagonist of metabotropic glutamate receptor type 1. J.Pharmacol.Exp. Ther. **315** 163.

(Sold with the permission of Astellas Pharma Inc.)

LY 341495⁵ XE-CCG⁴⁷. and containing а 9'-xanthylmethyl or 9'-xanthylethyl moiety in the α or 3'-position, display nanomolar affinities. Potency is retained when the α -xanthyl moiety is replaced by two substituted phenyl groups (e.g. mCD-CCG).48 It was recently reported that MGS0039 also exhibited high competitive group II antagonist activity.^{49,50} The addition of a dichlorobenzyl group to a close analog of HYDIA⁵¹ notably increases its affinity. MGS0039 and HYDIA are derivatives of the well-known agonist LY 354740. Indeed, it was previously demonstrated that substitution at the 3-position of the bicyclohexane critical for agonist/antagonist properties.14 is Systemic and antidepressant-like effects were observed with both LY 341495 and MGS0039.49 Other arylalkyl-substituted glutamate analogs such as ADED (LY 310225), (S)-BnQuis and NM-APDC display group II selectivity with IC₅₀ values in the micromolar range.5

Group III

Highly potent and group III-selective competitive antagonists have not yet been reported. The best agonist (*S*)-AP4 becomes a moderate antagonist when its α -proton is substituted by a methyl group, in MAP4. MCPG, a weak group I/II antagonist, becomes a moderate group III antagonist when the 4-carboxylate is replaced by a phosphonate, in MPPG. Addition of a substituent in the 3-position leads to a similar group III antagonist activity but increases selectivity for group III over group II.⁵² CPPG, the analog of MPPG bearing an α -cyclopropyl group, exhibits slightly increased potency^{5,52} in the same range as DCG IV, which is also a group II agonist.⁵³ Thus, the best activity is found with the non-selective antagonist LY 341495.⁵⁴

Allosteric Modulators

Allosteric modulators are non-competitive ligands that bind in the transmembrane heptahelical domain (HD). Negative and positive modulators have been identified.²⁰⁻²² Negative modulators inhibit receptor activation without affecting agonist binding, while positive modulators enhance agonist activation but do not activate receptors alone. Among the numerous mGlu receptor modulators that have been described (mostly in patents), only those for which biological activities are available will be presented here. These compounds are generally highly potent and subtypeselective, which is not the case for most competitive ligands.

Group I (Figure 4)

Both non-competitive inhibitors and enhancers have been disclosed for group I receptors.

mGlu₁ Antagonists

Detailed studies have been devoted to CPCCOEt, the first negative mGlu receptor modulator.^{19,55,56} In particular, specific residues of the HD that bind to CPCCOEt were identified by a group from Novartis.¹⁹ Following this, other compounds with higher affinities were discovered by HTS and subsequent optimization, in various companies: NPS2390^{57,58} (NPS Pharma Inc.), BAY 36-7620⁵⁹ (Bayer AG), LY 456066^{60,61} (Eli Lilly), R214127⁵⁸/JNJ 16259685^{62,63} (Johnson & Johnson), 3,5-dimethyl-pyrrole-2,4-dicarboxylic acid diesters of which DM-PPP is the most potent derivative⁶⁴ (GlaxoSmithKline), several analogs of

JNJ 16259685, Highly Potent mGlu₁ Antagonist

JNJ 16259685 Cat. No. 2333

JNJ 16259685 is a non-competitive mGlu₁ antagonist (K₁ = 0.34 nM) that exhibits low nanomolar potency. It inhibits glutamate-induced Ca²⁺ mobilisation at the human mGlu₁ receptor with an IC₅₀ value of 1.21 nM and is approximately 6000 times more potent than CPCCOEt and 50 times more potent than BAY 36-7620. The antagonist is selective over mGlu₅ (> 400-fold) and displays no activity at mGlu₂, mGlu₃, mGlu₄, mGlu₆, AMPA or NMDA receptors (IC₅₀ > 10 μ M). JNJ 16259685 is centrally active following systemic administration.

Lavreysen *et al* (2004) JNJ16259685, a highly potent, selective and systemically active mGlu1 receptor antagonist. Neuropharmacology **47** 961. **Mabire** *et al* (2005) Synthesis, structure-activity relationship, and receptor pharmacology of a new series of quinoline derivatives acting as selective, noncompetitive mGlu1 antagonists. J.Med.Chem. **48** 2134.

(Sold under license from Johnson & Johnson Pharmaceutical Research & Development, a division of Janssen Pharmaceutica NV) EM-TBPC^{65,66} (Hoffmann-La Roche) and recently YM 29819867 (Yamanouchi Pharma) and triazafluorenones⁶⁸ (Abbott Laboratories). A homology model of the mGlu₁ allosteric binding site has been generated and a binding mode proposed for EM-TBPC, which has been validated by mutagenesis and functional assays.65 Additionally, it was shown that several inhibitors (R214127, CPCCOEt, NPS2390 and BAY 36-7620) bind to this same site.58 Promising anxiolytic and analgesic effects have been reported with allosteric mGlu₁ receptor antagonists. However, cognition impairment was also found with JNJ 16259685.69

mGlu₁ Positive Modulators

The first allosteric potentiators of rat $mGlu_1$ receptors to be disclosed were Ro 01-6128, Ro 67-4853⁷⁰ and Ro 67-7476.^{71,72} Chimeric and mutated receptors were constructed to confirm the transmembrane localization of the binding site of these ligands, which are subtype 1 selective.⁷¹ Interestingly, Ro 67-7476 and Ro 01-6128 have little or no effect on human $mGlu_1$ receptor activation while Ro 67-4853 produces a pronounced enhancement.⁷¹

mGlu₅ Antagonists

SIB 1757 and SIB 1893⁷³ were initially found and optimized into MPEP,⁷⁴ which has been widely used⁷⁵ to explore the physiological roles of mGlu₅ receptors as a potential therapeutic target. Further investigations led to a methoxy derivative M-MPEP that can easily be radiolabeled.⁷⁶ More recently MTEP, a pyridine derivative of MPEP with improved aqueous solubility, was described with similar high mGlu₅ affinity⁷⁷ as well as its radiolabeled methoxymethyl derivative MM-MTEP,^{78,79} M-PEPy⁷⁸ and bipyridyl derivative MTEB.⁸⁰ The Merck group also disclosed new families

Fenobam, Selective mGlu₅ Antagonist

Fenobam Cat. No. 2386

Fenobam is a potent and selective non-competitive $mGlu_5$ antagonist that displays inverse agonist activity. It blocks $mGlu_5$ constitutive activity *in vitro* with an IC₅₀ value of 87 nM. Fenobam acts at an allosteric modulatory site shared with MPEP and binds the receptor with K_d values of 54 and 31 nM for rat and human receptors respectively. The compound displays anxiolytic activity following oral administration *in vivo*.

Porter *et al* (2005) Description of a clinically validated anxiolytic with mGlu5 antagonist properties. Neuropharmacology **49** (Suppl. 1) 267. **Porter** *et al* (2005) Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J.Pharmacol.Exp.Ther. **315** 711.

AMN 082, The First mGlu₇-Selective Agonist

AMN 082

AMN 082 is the first selective mGlu₇ agonist. It potently inhibits cAMP accumulation and stimulates GTP₇S binding in recombinant cells and on membranes expressing mGlu₇ (EC₅₀ = 64 - 290 nM). AMN 082 is selective over other mGluR subtypes and selected ionotropic glutamate receptors up to 10 μ M. The agonist acts via a novel allosteric site and is orally active and brain penetrant.

Flor et al (2005) AMN082, the first selective mGluR7 agonist: activation of receptor signaling via an allosteric site in the transmembrane domain modulates stress parameters *in vivo*. Neuropharmacology **49** (Suppl. 1) 244. **Mitsukawa** et al (2005) A selective metabotropic glutamate receptor 7 agonist: Activation of receptor signaling via an allosteric site modulates stress parameters *in vivo*. Proc.Natl.Acad.Sci.USA **102** 18712.

of potent mGlu₅ antagonists: aryl benzoxazoles⁸¹ (illustrated by BOMA), heteroarylazoles⁸² (such as tetrazole PTeB⁸² and its derivatives,^{83,84} dipyridyl amides⁸⁵ and dipyridyl amines⁸⁶). Recently it was demonstrated that the known anxiolytic drug fenobam was, in fact, a potent non-competitive mGlu₅ antagonist.⁸⁷ MPEP and derivatives were shown to exhibit anxiolytic effects in animal models.^{75,82} Additionally, molecular determinants of the high affinity binding site of MPEP have been defined;⁸⁸ a striking similarity with critical residues of the mGlu₁ binding site was observed.

mGlu₅ Positive Modulators

Two mGlu₅ potentiators, DFB⁸⁹ and CPPHA,⁹⁰ were first identified by the Merck group. It should be noted that replacing the fluorine atoms of DFB with methoxy substituents turns this ligand into an antagonist (DMeOB),⁸⁹ while dichlorobenzaldazine (DCB) is a neutral modulator that attenuates the potentiation conferred by DFB.⁸⁹ Similar modulations were found with close analogs of MPEP; moving the methyl substituent of the MPEP pyridyl ring to the neighbouring carbon turns this analog (5MPEP) into a neutral modulator.⁹¹ Thus, it is suggested that the positive allosteric binding site overlaps the negative one.

New series of $mGlu_5$ positive modulators (diphenylpyrazolebenzamide CDPPB^{92,93} and oxadiazol ADX47273^{94,95}) demonstrated antipsychotic effects in animal models of schizophrenia.

Figure 4 | Group I Allosteric Modulator Structures and Potencies

A. mGlu₁ Receptor Potentiators

D. mGlu₅ Receptor Potentiators

DFB EC₅₀ = 2.4 μM (mGlu₅)

CDPPB EC₅₀ = 27 nM (hmGlu₅)

CPPHA EC₅₀ = 0.14 μ M (mGlu₅)

ADX47273

E. mGlu₅ Receptor Neutral Modulators

DCB IC₅₀ = 2.6 μ M for DFB potentiation attenuation

5MPEP EC_{50} = 2.32 μM for blocking MPEP inhibition IC_{50} = 1.71 μM for DFB and CDPPB potentiation attenuation

(Bold Text Denotes Compounds Available From Tocris)

Group II (Figures 5A and 5B)

mGlu₂ Antagonists

Heterocyclic enol ethers such as Ro 64-5229 were reported as the first selective non-competitive mGlu₂ receptor antagonists.^{96,97} A series of dihydrobenzo[b][1,4]diazepin-2-one derivatives, typified by CH-DBO, was later claimed also to contain mGlu₂ receptor antagonists with nanomolar affinities.⁹⁸

mGlu₂ Positive Modulators

LY 487379, a pyridylmethylsulfonamide, has been reported to potentiate the activity of glutamate at mGlu₂ receptors with an EC₅₀ of 0.3 μ M and be highly selective for this subtype.⁹⁹ It was also demonstrated that LY 487379 binds to a pocket in the transmembrane domain that is different from the orthosteric site in the ATD.⁹⁹ Further SAR studies led to the discovery of the 1-methylbutoxy analog (2,2,2-TEMPS) with improved potency (EC₅₀ = 14 nM) and selectivity.^{100,101} Recently, a new chemical series of phenyl-tetrazolyl acetophenones (e.g. PTBE) was disclosed as selective mGlu₂ potentiators,¹⁰² followed by extensive SAR studies.¹⁰³⁻¹⁰⁷ Both types of potentiators showed *in vivo* activity.^{106,108}

mGlu₃

No specific allosteric modulators have yet been reported in the literature for this mGlu receptor subtype. Yet, a benzotriazole derivative of PTBE was noted to potentiate both $mGlu_2$ and $mGlu_3$ receptors.¹⁰⁶

Group III (Figures 5C, 5D and 5E)

To date, very few group III modulators have been disclosed. These include mGlu₄, mGlu₇ and mGlu₈ potentiators. PHCCC was initially described as an mGlu₁ receptor antagonist.⁵⁵ However, it was

recently found that its (-) enantiomer potentiates $mGlu_4$ receptor activation.^{109,110} Two other $mGlu_5$ antagonists SIB 1893 and MPEP were reported to enhance agonist potency and efficacy at human $mGlu_4$ at higher concentrations.¹¹¹ Recently, potentiators of $mGlu_7$ (AMN 082 from Novartis)¹¹² and $mGlu_8$ (Thiomethylanilide A and B from NPS Pharmaceuticals)¹¹³ were disclosed.

Radiolabeled Ligands and PET Radiotracers

Several of the potent mGlu ligands have been radiolabeled: Quis, DCG-IV, LY 354740, (*S*)-AP4, (*S*)-DCPG, LY 341495, CPPG, EM-TBPC, R214127, LY 456066, MPEP and MMTEP. Some mGlu receptor ligands have been labeled with carbon-11 or fluorine-18 and used for PET imaging.¹¹⁴⁻¹¹⁶

Conclusion

In the last few years some interesting new competitive ligands have been discovered, such as the selective mGlu₈ receptor agonist (S)-3,4-DCPG. However, the largest advances in mGlu receptor pharmacology have been made with allosteric modulators. These compounds are generally highly potent and selective. Moreover, many of them display in vivo activity and open the way to new therapeutic agents. Although some further subtype-selective compounds are still awaited, particularly for group III mGlu receptors, the panel of available mGlu receptor ligands is now rather broad and is allowing investigators to shed important new light on the physiological and pathological roles of the various mGlu receptor subtypes in the normal and diseased brain. This is currently ongoing in many laboratories and we anticipate watching the results unfold with great interest.

(Bold Text Denotes Compounds Available From Tocris)

List of Acronyms

ABHxD 2-aminobicyclo[2.1.1]hexane-2,5-dicarboxylic acid 1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R,4S)-1-aminocyclopentane-1,3,4-tricarboxylic acid (1R,3R,4S)-1-aminocyclopentane-1,3,4-tricarboxylic acid ACPD ACPT-I ACPT-II (1X,5X,43)-1-aninocyclopentane-1,3,4-tricarboxylic acid (3S,4S)-1-aminocyclopentane-1,3,4-tricarboxylic acid (2S,4S)-2-amino-4-(2,2-diphenylethyl)pentane-1,5-dioic acid (S)-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone N,N'-dibenzhydrylethane-1,2-diamine (+)-ACPT-III ÀDED ADX47273 AMN 082 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid 2-amino-4-phosphono-butyric acid AMPA HomoAMPA AP4 APCPr APDC 1-amino-2-phosphonomethylcyclopropane carboxylic acid 4-aminopyrrolidine-2,4-dicarboxylic acid 4-aminopyrrolidine-1,2,4-tricarboxylic acid APTC BAY 36-7620 (3aS,6aS)-6a-naphthalen-2-ylmethyl-5-methyliden-hexahydro-cyclopental[c]furan-1-on BnAPDC *N*-benzyl-4-aminopyrrolidine-2,4-dicarboxylic acid *a*-benzylquisqualic acid BnQuis BOMA 2-[4-(1,3-benzoxazol-2-yl)-2-methoxyphenyl]acetonile 2-[4-(1,3-benz0xaz0-2-y])-2-metnoxypnenyljacetonile (2S,1'S,2'S,3'R)-2-(arboxycyclopropyl)glycine (2S,1'S,2'R,3'R)-2-(3'-methyl-2'-carboxycyclopropyl)glycine (2S,1'S,2'R,3'R)-2-(3'-metcaptomethyl-2'-carboxycyclopropyl)glycine (2S,1'R,2'R,3'R)-2-(3'-metcaptomethyl-2'-carboxycyclopropyl)glycine 2-(di-*meta*-chlorophenylethyl)-2-(carboxycyclopropyl)glycine (2S,1'S,2'S,3'R)-2-(3'-xanthenylethyl-2'-carboxycyclopropyl)glycine 1-amino-3-[3',5'-dioxo-1',2',4'-oxadiazolidinyl)]cyclobutane-1-carboxylic acid 3-cyano-N-(1,3-diphenyl-1*H*-pyrazol-5-yl)benzamide 8-chloro-4-[3-(4-hydroxymethyl-thiazol-2-yl)-phenyl]-7-isobutyl-methylamino)-1,3-dihydro-benzo[b][1,4]diazepin-2-one 2-chloro-5-bydroxyubenydluvine L-CCG-I 3'Me-CCG 3'HM-CCG 3'SM-CCG mCD-CCG XE-CCG CBQA CDPPB CH-DBO CHPG 4C3H2MPG 4C2MPG 2-chloro-5-hydroxyphenylglycine 4-carboxy-3-hydroxy-2-methylphenylglycine (+)-4-carboxy-2-methylphenylglycine 4CPG carboxyphenylglycine (-)-CPCCOEt CPPG (1aS,7aS)-(2-hydroxyimino-1a,2-dihydro-1H-7-oxacyclopropa[b]naphthalene-7a-carboxylic acid ethyl ester a-cyclopropyl-4-phosphonopheny[glycine N-{4-chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-hydroxybenzamide CPPHA DCG IV 3,4-DCPG (2Š,1'*R*,2'*R*)-2-(2',3'-dicarboxycyclopropyl)glycine 3,4-dicarboxyphenylglycine 3,5-DHPG 3,5-dihydroxyphenylglycine DCB DFB 3,3'-dichlorobenzaldazine 3,3'-difluorobenzaldazine DMeOB 3,3'-dimethoxybenzaldazine DM-PPP EM-TBPC 3,5-dimethyl-pyrrole-2,4-dicarboxylic acid 2-propylester 4-[(S)-1,2,2-trimethylpropyl]ester 1-ethyl-2-methyl-6-oxo-4-(1,2,4,5-tetrahydro-benzo[d]azepin-3-yl)-1,6-dihydro-pyrimidine-5-carbonitrile L-Glu L-glutamate G-protein-coupled receptor (1S,2R,3R,5R,6S)-3-hydroxy-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (3,4-dihydro-2*H*-pyrano[2,3-b]quinolin-7-yl)-(*cis*-4-methoxycyclohexyl)-methanone GPCR HYDIA JNJ 16259685 LY 339840 (4C3H2MPG) (RS)-4-carboxy-3-hydroxy-2-methylphenylglycine (1S,1S',2S')-2-(9-xanthylmethyl)-2-(2'-carboxycyclopropyl)glycine (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (1R,2S,5R,6R)-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid LY 341495 LY 354740 LY 354740-6F (11,22,07,07,07) 22 animo-biodobolyclop.10 (pickale-2,0 a-thioxanthylmethyl-4-carboxyphenylglycine
 (+)-4-carboxy-2-methylphenylglycine
 2-oxa-4-aminobicyclo[3.1.0] hexane-4,6-dicarboxylic acid
 2-thia-4-aminobicyclo[3.1.0] hexane-4,6-dicarboxylic acid LY 367366 LY 367385 (4C2MPG) LY 379268 LY 389795 LY 393053 (±)-2-amino-2-(3-cis and trans-carboxycyclobuty))-3-(9-thioxanthyl)propionic acid (S)-cis- α -thioxanthylmethyl-3-carboxycyclobutylglycine LY 393675 a-thioxanthyImethyI-4-carboxyphenylglycine 2-[4-(indan-2-ylamino)-5,6,7,8-tetrahydroquinazolin-2-ylsulfanyl]-ethanol N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2-trifluoroethylsulfonyl)pyrid-3-ylmethylamine LY 397366 LY 456066 LY 487379 MAP4 2-methyl-2-amino-4-phosphono-butyric acid (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine a-methyl-4-carboxyphenylglycine (1S,2S,3S,5R,6S)-2-amino-3-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (1R,2S,5S,6S)-2-amino-6-fluoro-4-oxobicyclo[3.1.0]-hexane-2,6-dicarboxylic acid (1R,2R,3R,5R,6R)-2-amino-3-(3,4-dichlorobenzyloxy)-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid MCCG MCPG MGS0008 MGS0028 MGS0039 MPPG α-methyl-4-phosphonophenylglycine 2-methyl-6-(phenylethynyl)pyridine 5-methyl-2-(phenylethynyl)pyridine 2-[(3-methoxyphenyl)ethynyl]-6-methylpyridine 5-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-2,3'-bipyridine 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine 3-(methoxymethyl)-5-[(2-methyl-1,3-thiazol-4-yl)-ethynyl]pyridine MPFP 5MPFP M-MPEP MTEB MTFP MM-MTEP N-acetyl-4-amino-1-(1-naphthylmethyl)pyrrolidine-2,4-dicarboxylic acid N-methyl-D-aspartate NAAG NM-APDC NMDA NPS2390 N-(1-adamantyl)-2-quinoxaline-carboxamide 4-phosphonophenylglycine N-phenyl-7-(hydroxylimino)cyclopropa[b]chromen-1a-carboxyamide PPG PHCCC 3,5-dimethyl-pyrrole-2,4-dicarboxylic acid 2-propylester 4-[(S)-1,2,2-trimethyl-propyl]ester 1-(2-hydroxy-3-propyl-4-4-[4-(2H-tetrazol-5-yl)phenoxy]butoxyphenyl)ethanone 3-(5-pyridin-2-yl-2H-tetrazol-2-yl)benzonitrile 3,5-dimethyl PPP PTBE PTeB Quis quisqualate R214127 Ro 01-6128 Ro 64-5229 1-(3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-2-phenyl-1-ethanone diphenylacetyl-carbamic acid ethyl ester 1-Z-[2-cycloheptyloxy-2-(2,6-dichlorophenyl)vinyl]-(1,2,4-triazole) Ro 67-4853 Ro 67-7476 (9H-xanthene-9-carbonyl)-carbamic acid butyl ester (S)-2-(4-fluoro-phenyl)-1-(toluene-4-sulfonyl)-pyrrolidine 6-methyl-2-(phenylazo)-3-pyridinol SIB 1757 SIB 1893 (E)-2-methyl-6-(2-phenylethenyl)pyridine Serine-O-phosphate 2,2,2-trifluoroethyl-N-[3-(1-methylbutoxy)phenyl]-N-(3-pyridinylmethyl)sulfonamide SOP 2,2,2-TEMPS Thiomethylanilide A 2-[(4-bromobenzyl)thio]-N-(4-isobutylphenyl)acetamide Thiomethylanilide B YM 298198 2-[(4-methoxybenzyl)thio]-N-(4-ethylphenyl)acetamide 6-Amino-N-cyclohexyl-N,3-dimethyl-thiazolo[3,2-a]benzimidazole-2-carboxamide

83. Poon et al (2004) Bioorg.Med.Chem.Lett. 14 5477.

84

85

86

87

88

89

91

92

93

94

95

96.

97

98

252

2173

5867

1565

4354

13668

18712

170

1197

4350

Tehrani et al (2005) Bioorg.Med.Chem.Lett. 15 5061.

Bonnefous et al (2005) Bioorg.Med.Chem.Lett. 15

Kamenecka et al (2005) Bioorg.Med.Chem.Lett. 15

Porter et al (2005) J.Pharmacol.Exp.Ther. 315 711.

O'Brien et al (2004) J.Pharmacol.Exp.Ther. 309 568.

Kinney *et al* (2005) J.Pharmacol.Exp.Ther. **313** 199.

Le Poul et al (2005) Neuropharmacology 49 (Suppl. 1)

Adam et al (1999) Neuropharmacology 38 A1 abstract

Kolczewski et al (1999) Bioorg.Med.Chem.Lett. 9

Schaffhauser et al (2003) Mol.Pharmacol. 64 798

100. Barda *et al* (2004) Bioorg.Med.Chem.Lett. *14* 3099. 101. Hu *et al* (2004) Bioorg.Med.Chem.Lett. *14* 5071. 102. Pinkerton *et al* (2004) J.Med.Chem. *47* 4595.

103. Pinkerton et al (2004) Bioorg.Med.Chem.Lett. 14

104. Pinkerton et al (2005) Bioorg.Med.Chem.Lett. 15

105. Cube et al (2005) Bioorg.Med.Chem.Lett. 15 2389.

106. Govek *et al* (2005) Bioorg.Med.Chem.Lett.**15** 4068. 107. Bonnefous *et al* (2005) Bioorg.Med.Chem.Lett.**15**

108. Johnson et al (2005) Psychopharmacology 179 271.

109. **Maj** *et al* (2003) Neuropharmacology **45** 895. 110. **Marino** *et al* (2003) Proc.Natl.Acad.Sci.USA **100**

111. Mathiesen et al (2003) Br.J.Pharmacol. 138 1026.

114. **Hamill** *et al* (2005) Synapse **56** 205. 115. **Huang** *et al* (2005) J.Med.Chem. **48** 5096.

116. Yu et al (2005) Nucl.Med.Biol. 32 631.

112. Mitsukawa et al (2005) Proc.Natl.Acad.Sci.USA 102

113. Wilson et al (2005) Neuropharmacology 49 (Suppl. 1)

Naples and Hampson (2001) Neuropharmacology 40

Rodriguez et al (2005) Mol.Pharmacol. 68 1793.

Malherbe et al (2003) Mol.Pharmacol. 64 823. O'Brien et al (2003) Mol.Pharmacol. 64 731.

Lindsley et al (2004) J.Med.Chem. 47 5825.

Bessis et al (2005) Patent WO2005044797

Adam et al (2002) Patent US2002/0193367.

References

- Dingledine et al (1999) Pharmacol.Rev. 51 7.
- 2 Conn and Pin (1997) Ann.Rev.Pharmacol.Toxicol. 37 205 Pin and Acher (2002) Curr.Drug Targets - CNS &
- 3.
- Neur.Dis. **1** 297. Marek (2004) Curr.Opin.Pharmacol. **4** 18. 4
- Schoepp *et al* (1999) Neuropharmacology **38** 1431. Pin *et al* (1999) Eur.J.Pharmacol. **375** 277.
- 6
- Pin et al (2003) Pharmacol. Ther. 98 325. 7
- **O'Hara** et al (1993) Neuron **11** 41 8
- Bessis et al (2000) Protein Sci. 9 2200 9.
- 10 11
- Kunishima *et al* (2000) Nature **407** 971. Bessis *et al* (2002) Proc.Natl.Acad.Sci.USA **99** 11097. Hampson *et al* (1999) J.Biol.Chem. **274** 33488. 12
- 13 Malherbe et al (2001) Mol.Pharmacol. 60 944.
- 14
- Bertrand et al (2002) J.Med.Chem. 45 3171. Rosemond et al (2002) J.Biol.Chem. 277 7333. 15
- Rosemond *et al* (2004) Mol.Pharmacol. **66** 834. 16.
- Acher and Bertrand (2005) Biopolymers 80 357 17
- 18. May and Christopoulos (2003) Curr.Opin.Pharmacol. 3 551
- 19 Litschig et al (1999) Mol.Pharmacol. 55 453 Augelli-Szafran and Schwarz (2003) Ann.Report 20
- Med.Chem. 38 21. Kew (2004) Pharmacol.Ther. 104 233. 21
- Sabbatini and Micheli (2004) Exp.Opin.Ther.Patents 22. **14** 1593
- 23
- 24
- Bessis *et al* (1999) Neuropharmacology **38** 1543. Monn *et al* (1997) J.Med.Chem. **40** 528. Johnson *et al* (2002) Drug Metab.Disp. **30** 27. 25.
- 26 Palmer et al (1989) Éur.J.Pharmacol. 166 585.
- 27
- Doherty et al (1997) Neuropharmacology 36 265. Littman et al (1999) J.Med.Chem. 42 1639. 28
- 29 Monn et al (1999) J.Med.Chem. 42 1027
- 30.
- Nakazato et al (2000) J.Med.Chem. 43 4893.
- 31. 32. Collado et al (2002) J.Med.Chem. 45 3619. Collado et al (2004) J.Med.Chem. 47 456.
- Gonzalez et al (2005) Bioorg.Med.Chem. 13 6556 33
- 34
- Dominguez et al (2005) J.Med.Chem. 48 3605. 35
- Kroona et al (1991) J.Med.Chem. **34** 1692. Sibille et al (2002) Drugs Fut. **27** (Suppl. A) 450 36
- Gasparini et al (1999) J.Pharmacol.Exp.Ther. 290 37. 1678
- Gasparini et al (2000) Bioorg.Med.Chem.Lett. 10 38 1241
- Thomas et al (2001) Neuropharmacology 40 311. 39.

Group I/group II mGlu agonist

Group I/group II mGlu agonist

Selective group I mGlu agonist

Potent group I/group II agonist

Endogenous, non-selective agonist

Group I mGlu agonist, active isomer Mixed mGlu Receptor Tocriset

Stable photoreleaser of L-glutamate

Selective mGlu₅ receptor antagonist

Group I antagonist/group II agonist

Potent, selective group I mGlu antagonist

(S)-3-Carboxy-4-hydroxyphenylglycine

Very potent group I mGlu agonist

Selection of 5 group I mGlu receptor ligands

Selection of 5 mixed mGlu receptor ligands

Group I mGlu Receptor Tocriset

(RS)-3-Hydroxyphenylglycine

(S)-3-Hydroxyphenylglycine

Active enantiomer of (0342)

mGlu₅ selective agonist

Group I agonist; some mGlu₅ selectivity

Agonists

0187

0284

0860

1049

0342

0805

1058

0218

1826

0324

0326

1829

1490

0188

0162

2254

0904

0125

0329

Antagonists ACDPP

AIDA

DL-AP3

(±)-trans-ACPD

(1S,3R)-ACPD

(RS)-3,5-DHPG

(S)-3,5-DHPG

L-3´-F₂CCG-I

L-Glutamic acid

Group I mGlu agonist

MNI-caged-L-glutamate

Group I mGlu antagonist

L-Quisqualic acid

S-Sulfo-L-cysteine

Group I agonist

tADA

CHPG

Group I Selective Metabotropic Glutamate Receptor Ligands

- Acher et al (1997) J.Med.Chem. 40 3119.
 Tückmantel et al (1997) Bioorg.Med.Chem.Lett. 7 601.
 Ahmadian et al (1997) J.Med.Chem. 40 3700.
- 43 Schann et al (2005) Neuropharmacology 49 (Suppl. 1) 272
- 44 Chen et al (2000) Neuroscience 95 787
- 45
- 46
- Kingston et al (2000) Neurosci.Lett. 330 127. Melendez et al (2005) J.Pharmacol.Exp.Ther. 314 139. Pellicciari et al (2001) Bioorg.Med.Chem.Lett. 11 3179. Sørensen et al (2003) Bioorg.Med.Chem. 11 197. 47
- 48
- Chaki *et al* (2004) Neuropharmacology *46* 457. Nakazato *et al* (2004) J.Med.Chem. *47* 4570. 49 50
- 51
 - Adam et al (1999) Neuropharmacology 38 A1 abstract 3 Conway et al (2001) Bioorg.Med.Chem.Lett. 11 777.
- 53
- Brabet et al (1998) Neuropharmacology **37** 1043. Wright et al (2000) Naunyn-Schmied.Arch.Pharmacol. **362** 546. 54
- 55 Annoura et al (1996) Bioorg.Med.Chem.Lett. 6 763.
- 56
- Ott et al (2000) J.Med.Chem. 43 4428. Van Wagenen et al (1998) Soc.Neurosci.Abstract 24. Lavreysen et al (2003) Mol.Pharmacol. 63 1082. 57
- 58
- Caroli et al (2001) Mol. Pharmacol. 59 965
- 60
- 61
- Li et al (2002) Neuropharmacology 43 A79. Ambler et al (2001) Patent WO 01/32632. Lavreysen et al (2004) Neuropharmacology 47 961. 62
- Mabire et al (2005) J.Med.Chem. 48 2134 63
- 64
- 65
- Micheli et al (2003) Bioorg.Med.Chem. **11** 171. Malherbe et al (2003) J.Biol.Chem. **278** 8340. Binggeli et al (2002) Patent WO 02051418.
- 66 67
- Kohara et al (2005) J.Pharmacol.Exp.Ther. 315 163.
- Zheng *et al* (2005) J.Med.Chem. **48** 7374. Steckler *et al* (2005) Behav.Brain Res. **164** 52 68
- 69 Bleicher et al (2000) Patent WO 0063166
- 70
- 71 Knoflach et al (2001) Proc.Natl.Acad.Sci.USA 98
- 13402
- Wichmann et al (2002) Farmaco 57 989. 72
- Varney et al (1999) J.Pharmacol.Exp.Ther. 290 170. 73
- 74 Gasparini et al (1999) Neuropharmacology 38 1493.
- Spooren et al (2001) TiPS 22 331. Gasparini et al (2002) Bioorg.Med.Chem.Lett. 12 407. Cosford et al (2003) J.Med.Chem. 46 204. 75
- 76
- 77.
- Cosford et al (2003) Bioorg.Med.Chem.Lett. 13 351. Anderson et al (2002) J.Pharmacol.Exp.Ther. 303 78 79
- 1044
- Roppe et al (2004) Bioorg.Med.Chem.Lett. 14 3993. 80
- Wang et al (2004) Bioorg.Med.Chem. 12 17. 81

Metabotropic Glutamate Receptor Compounds Available from Tocris

0320

0323

2390

1027

1215

1214

2448

2447

82. Roppe et al (2004) J.Med.Chem. 47 4645.

> CPCCOEt 1028 Selective, non-competitive mGlu1 receptor antagonist 1009 E4CPG Group I/group II mGlu antagonist

(S)-4-Carboxy-3-hydroxyphenylglycine Group I antagonist/group II agonist

2386 Fenobam

(S)-4-Carboxyphenylglycine

- Potent and selective mGlu₅ antagonist
- 1826 Group I mGlu Receptor Tocriset
- Selection of 5 group I mGlu receptor ligands HexyIHIBO 1749
- Group I mGlu antagonist (S)-HexylHIBO 1750
- Group I mGlu antagonist
- JNJ 16259685 2333
- Extremely potent, mGlu₁-selective non-competitive antagonist 1237 LY 367385

Potent group I mGlu antagonist. Also mGlu₄ potentiator

Highly potent, selective non-competitive mGlu1 antagonist

www.tocris.com

11

Competitive group I mGlu antagonist/weak group II agonist

- Selective mGlu_{1a} antagonist
- 2196 3-MATIDA Potent, selective mGlu1 antagonist
- (RS)-MCPG 0336
- Non-selective mGlu antagonist 0337
- (S)-MCPG Active isomer of (0336)

MPMQ

РНССС

SIB 1757

SIB 1893

YM 298198

- 1829 Mixed mGlu Receptor Tocriset
- Selection of 5 mixed mGlu receptor ligands

Highly selective mGlu₅ antagonist

Highly selective mGlu5 antagonist

Desmethyl-YM 298198

Derivative of Cat. No. 2448

1212 MPEP mGlu₅ subtype-selective antagonist

Selective mGlu1 antagonist

Other 1952	DCB						
1625	DFB						
1953	DMeOB						
2028	Anti-mGlu						
2032	Antibody recognising rat molu, receptors						
_							
Grou	o II Selective Metabotropic Glutamate Receptor Ligands						
Agoni	sts						
0187	(±)-trans-ACPD Group II/group I mGlu agonist						
0284	(15,3R)-ACPD Group II/group I mGlu agonist						
1208	Highly selective group II agonist						
0329	Selective group II mGlu agonist, also group I mGlu antagonist						
0320	(S)-4-Carboxy-3-hydroxyphenylglycine Group II agonist/group I antagonist						
0323	(S)-4-Carboxyphenylglycine Group I mGlu antagonist/weak group II agonist						
0333	L-CCG-I Potent group II mGlu agonist						
0975	Potent group II mGlu agonist. Also group III mGlu antagonist and						
1058	L-3'-F ₂ CCG-I						
0218	L-Glutamic acid						
1827	Group II mGlu Receptor Tocriset						
1829	Mixed mGlu Receptor Tocriset						
1490	MNI-caged-L-glutamate Stable obotoreleaser of L-glutamate						
0391	Spaglumic acid Selective mGlu ₃ agonist						
Antag	onists						
4073							
1073	Selective group II antagonist E4CPG						
0971	Group II/group I mGlu antagonist EGLU						
1827	Highly selective group II mGlu antagonist Group II mGlu Receptor Tocriset						
1209	Selection of 5 group II mGlu receptor ligands LY 341495						
0336	Highly potent, selective group II antagonist (<i>RS</i>)-MCPG						
0337	Non-selective mGlu antagonist (S)-MCPG						
1829	Active isomer of (0336) Mixed mGlu Receptor Tocriset						
0854	Selection of 5 mixed mGlu receptor ligands MSPG						
0855	Group II/group III mGlu antagonist MTPG						
	group III more antagonist. More selective for group II than						
Other 2027	Anti-mGlu ₂						
2029	Antibody recognising rat mGlu ₂ receptors Anti-mGlu _{2/3}						
	Antibody recognising human mGlu ₂ and mGlu ₃ receptors						
Group III Selective Metabotropic Glutamate Receptor Ligands							
1111	ACPT-I						

- Group III mGlu agonist
- 1113 (±)-ACPT-III Selective group III agonist
- 2385 AMN 082
- The first selective mGlu, agonist

- 0103 L-AP4
- Selective group III mGlu agonist (*RS*)-3,4-DCPG
- Potent systemically active anticonvulsant. Racemate of (1302) **1302** (S)-3,4-DCPG
- Potent, selective mGlu_{8a} agonist
- 0218 L-Glutamic acid Endogenous, non-selective agonist
- 1828 Group III mGlu Receptor Tocriset
- Selection of 5 group III mGlu receptor ligands 1026 HomoAMPA
- Potent, highly selective mGlu₆ agonist 1829 Mixed mGlu Receptor Tocriset
- 1829 Mixed mGlu Receptor Tocriset Selection of 5 mixed mGlu receptor ligands
 1490 MNI-caged-L-glutamate
- Stable photoreleaser of L-glutamate **0238 O-Phospho-L-serine**
- Group III mGlu agonist
- 1220 (RS)-PPG Potent group III mGlu agonist
- Antagonists

0972 CPPG

- Very potent group III mGlu antagonist
- 0975 DCG IV
- Group III antagonist/group II mGlu agonist 1828 Group III mGlu Receptor Tocriset
- Selection of 5 group III mGlu receptor ligands
- 1209 LY 341495 Group II/III antagonist
- 0711 MAP4
- Selective group III mGlu antagonist
- 1829 Mixed mGlu Receptor Tocriset Selection of 5 mixed mGlu receptor ligands
- 0853 MPPG
- Group III/group II mGlu antagonist. More selective for group III than group II
- 0803 MSOP
- Specific group III mGlu antagonist
- 0854 MSPG Group III/group II mGlu antagonist
- 1369 UBP1112
- Group III mGlu antagonist

Other

- 2031 Anti-mGlu₇ Antibody recognising human mGlu₇ receptors
- Quisqualate-Sensitised AP6 Site
- 0101 DL-AP4
- Agonist/broad spectrum EAA antagonist 0102 D-AP4
- Less potent enantiomer
- 0103 L-AP4
- Agonist; also group III mGlu agonist 0105 DI -AP5
- Agonist; also NMDA antagonist
- 0106 D-AP5
- Less potent enantiomer. Also NMDA antagonist
- 0107 L-AP5 Agonist; also NMDA antagonist
- 0341 L-AP6
- Selective agonist, highly potent 0188 L-Quisqualic acid
- Sensitiser

Miscellaneous Metabotropic Glutamate Receptor Compounds

- 1112 ACPT-II
- Competitive mGlu receptor antagonist 0216 L-Cvsteinesulfinic acid
- Agonist at PLD-coupled mGlu receptor, also NMDA agonist **0285 Ibotenic acid**
- Non-selective mGlu agonist, also NMDA agonist 1611 Lamotrigine
- Inhibits glutamate release. Anticonvulsant
- 2289 Lamotrigine isethionate Water-soluble salt of Cat. No. 1611
- 1721 Tocriscreen Glutamate Ligands
 - Collection of glutamate receptor and related compounds

UK:

Tocris Reviews No. 26 ©2006 Tocris Cookson

www.tocris.com

Phone: + 44 (0)117 916 3333 Fax: + 44 (0)117 916 3344 customerservice@tocris.co.uk Tocris House, Hung Road, Bristol, BS11 9XJ, UK US: Phone: 800-421-3701 Fax: 800-483-1993 customerservice@tocrisusa.com 16144 Westwoods Business Park, Ellisville, Missouri 63021, USA