Ian L. Martin, Norman G. Bowery and Susan M.J. Dunn

Ian Martin is Professor of Pharmacology in the School of Life and Health Sciences, Aston University, Birmingham, UK. Norman Bowery is Emeritus Professor of Pharmacology, University of Birmingham, UK. Susan Dunn is Professor and Chair at the Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Canada. All three authors share common interests in GABAergic transmission. E-mail: sdunn@pmcol.ualberta.ca

Contents

Introduction.. 1
The GABA_A Receptor.. 1–9
 Distribution and Function.. 1
 Receptor Diversity... 2
 Structure and Function... 3
 Modulators of GABA_A Receptor Function... 6
 Receptors Previously Classified as GABA_A... 9

The GABA_B Receptor.. 10–12
 Distribution and Function.. 10
 Molecular Characterization... 10
 Clinical Potential... 11

Conclusions... 12

References.. 12–13

GABA Receptor Compounds... 14–15

Historical Perspective

GABA is the major inhibitory amino acid transmitter of the mammalian central nervous system (CNS). Essentially all neurons in the brain respond to GABA and perhaps 20% use it as their primary transmitter. Early electrophysiological studies, carried out using iontophoretic application of GABA to CNS neuronal preparations, showed it to produce inhibitory hyperpolarizing responses that were blocked competitively by the alkaloid bicuculline. However, in the late 1970s, Bowery and his colleagues, who were attempting to identify GABA receptors on peripheral nerve terminals, noted that GABA application reduced the evoked release of noradrenalin in the rat heart and that this effect was not blocked by bicuculline. This action of GABA was mimicked, however, by baclofen (Figure 1), a compound that was unable to produce rapid hyperpolarizing responses in central neurons. This newly identified receptor was named GABA_B to differentiate it from the more familiar receptor type which became known as GABA_A. Another bicuculline-insensitive receptor was first identified using the conformationally restricted GABA analog, CACA (Figure 1). This receptor, previously termed GABA_C, has now been subsumed into the GABA_A receptor class, on the recommendation of the IUPHAR Nomenclature Committee.

The GABA_A Receptor

Distribution and Function

GABA_A receptors are widely but differentially distributed within the CNS. These receptors can be activated by a number of GABA isosteres, including muscimol and isoguvacine (Figure 1). After radiolabeling, some of these ligands proved valuable in the early delineation of receptor distribution. Functionally, receptor...
activation results in an increased membrane chloride conductance, usually causing an influx of Cl\(^-\) and membrane hyperpolarization. In general, concentration-response curves exhibit positive cooperativity, which is consistent with the presence of at least two agonist binding sites on each receptor molecule. On continued exposure to high agonist concentrations, the agonist-induced current decreases as a consequence of receptor desensitization.

Biophysical characterization of the receptor, carried out initially using noise analysis of neurons in primary culture, provided the first estimates of mean single channel conductance and average channel open times, the latter of which varied with the nature of the activating agonist. Development of single channel recording techniques provided further detail on the nature of single channel events with the demonstration of multiple single channel conductances: 44, 30, 19 and 12pS, the 30pS conductance being the most prevalent. Both channel opening times and opening frequency are dependent on agonist concentration and the competitive antagonist, bicuculline, reduces the conductance by modulating both of these parameters. Other competitive antagonists include the pyridazinyl GABA derivative, SR 95531 (Figure 2). The receptor can also be blocked non-competitively by picrotoxin and a number of bicyclophosphates.

In addition, penicillin decreases channel open probability in a manner that is compatible with open channel block.

Receptor Diversity

Purification of the bovine brain receptor in the early 1980s revealed two major subunits of the GABA\(_A\) receptor, which were named \(\alpha\) and \(\beta\). Elucidation of partial amino acid sequences of these subunits allowed subunit-specific monoclonal antibodies to be raised, thus providing the opportunity to explore the fine anatomical detail of receptor distribution. The sequence data also facilitated the cloning of the first two GABA\(_A\) receptor subunit isoforms.

Subsequent molecular studies revealed a multiplicity of protein subunits that have now been divided into seven classes, based on the extent of similarities in their deduced amino acid sequences. Within these classes there are further subdivisions into subunit isoforms, some of which exhibit alternate splice variants. In man, six \(\alpha\)-, three \(\beta\)-, three \(\gamma\)- and three \(\rho\)- subunit isoforms are presently known, together with single representatives of the \(\delta\), \(\varepsilon\), \(\pi\) and \(\theta\) classes. Within a single subunit class, the sequence homology is about 70% but between classes this falls to around 30%. Additional isoforms of some of these classes are known in other species. In the earlier receptor nomenclature,
the three ρ-subunits were considered to define the GABA_{ρ} receptor.⁶

Deduced amino acid sequences from each of the subunits reveal homologies and a common structural organization which places them firmly within the so-called Cys-loop ligand-gated ion channel (LGIC) family. These receptors are pentamers of homologous subunits that assemble to form a central ion channel traversing the cell membrane. The archetypal member of the family is the peripheral nicotinic acetylcholine receptor (nAChR) with other members of the family including glycine and 5-HT_{2} receptors. Each subunit has a long amino terminal domain of more than 200 amino acids which carries the signature cys-cys loop. This extracellular domain is followed by four hydrophobic segments, each of which is about 20 amino acids long. These four segments, termed TM1–TM4, were predicted to form transmembrane domains with TM2 contributing to formation of the ion channel lining. Between TM3 and TM4 there is a large intracellular loop, which is the most divergent part of the sequence within the GABA_{α} receptor subfamily.

Despite the plethora of divergent subunits, current evidence suggests that only a limited number of GABA_{α} receptor subunit combinations are expressed in vivo. Each subunit is encoded by a separate gene and a combination of in situ hybridization and immunohistochemical studies has revealed a distinct distribution of the various gene products in the CNS. This is consistent with the idea that each receptor subtype, made up of different combinations of subunits, serves defined physiological roles. In turn, this provides valuable information for development of subtype-selective pharmaceutical agents. However, an added complexity is that the expression patterns of individual subunits are not immutable. These can change during development, in response to normal physiological cycles and also as a consequence of pharmacological intervention.

Most receptors in the mammalian CNS comprise α-, β- and ρ-subunits, with the most ubiquitous receptor subtype containing the α1, β2 and γ2 isoforms. The recognition and functional characteristics of individual GABA_{α} receptor subtypes have been explored extensively using recombinant receptors expressed in mammalian cells or Xenopus oocytes. Many mutagenesis studies have been carried out to determine the roles of individual subunits, peptide segments and specific amino acids in receptor function. It is clear that in order to interpret mutagenic results effectively at the molecular level, it is essential to have an accurate view of the overall structure of the receptor.

Structure and Function

When the sequence homologies of many subunits of the Cys-loop LGIC family were first revealed, it seemed reasonable to predict that all members would share the same structural organization as the Torpedo nAChR. This is the best characterized member of the family and it has been elegantly imaged using cryoelectron microscopy, most recently at a resolution of 4Å. It is a pentamer of homologous subunits that are arranged pseudosymmetrically around an integral ion channel. Using electron microscopy to determine the structure of the LGIC family, it became evident that all members would share the same structural organization.

Table 1 | Comparative pharmacology of GABA receptors

<table>
<thead>
<tr>
<th>Compound</th>
<th>GABA_{α}</th>
<th>GABA_{β}</th>
<th>GABA_{ρ} (formerly GABA_{γ})</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GABA</td>
<td>Agonist</td>
<td>Agonist</td>
<td>Agonist</td>
<td></td>
</tr>
<tr>
<td>Muscimol</td>
<td>Agonist</td>
<td>Inactive</td>
<td>Partial agonist</td>
<td>5, 7, 158</td>
</tr>
<tr>
<td>Isoguvacine</td>
<td>Agonist</td>
<td>Inactive</td>
<td>Antagonist</td>
<td>5, 7</td>
</tr>
<tr>
<td>THIP</td>
<td>Agonist</td>
<td>Inactive</td>
<td>Antagonist</td>
<td>5, 7</td>
</tr>
<tr>
<td>P4S</td>
<td>Agonist</td>
<td>Inactive</td>
<td>Antagonist</td>
<td>5, 7</td>
</tr>
<tr>
<td>TACA</td>
<td>Agonist</td>
<td>Inactive</td>
<td>Agonist</td>
<td>7</td>
</tr>
<tr>
<td>CACA</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Partial agonist</td>
<td>7</td>
</tr>
<tr>
<td>(R)-Baclofen</td>
<td>Inactive</td>
<td>Agonist</td>
<td>Inactive</td>
<td>5, 7</td>
</tr>
<tr>
<td>Bacloline</td>
<td>Antagonist</td>
<td>Inactive</td>
<td>Inactive</td>
<td>5, 7</td>
</tr>
<tr>
<td>Picrotoxin</td>
<td>Antagonist</td>
<td>Inactive</td>
<td>Antagonist</td>
<td>5, 7</td>
</tr>
<tr>
<td>CGP 35348</td>
<td>Inactive</td>
<td>Antagonist</td>
<td>Inactive</td>
<td>159</td>
</tr>
<tr>
<td>CGP 54626</td>
<td>Inactive</td>
<td>Antagonist</td>
<td>Inactive</td>
<td>159</td>
</tr>
<tr>
<td>CGP 64213</td>
<td>Inactive</td>
<td>Antagonist</td>
<td>Inactive</td>
<td>159</td>
</tr>
<tr>
<td>SCH 50911</td>
<td>Inactive</td>
<td>Antagonist</td>
<td>Inactive</td>
<td>159</td>
</tr>
<tr>
<td>TMPMA</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Antagonist</td>
<td>7, 160, 161</td>
</tr>
</tbody>
</table>

(Bold text denotes compounds available from Tocris at time of publication)
image the purified porcine GABA\(_A\) receptor by negative staining, a pentameric structure of similar diameter (about 8 nm across the pentamer) was revealed.\(^{40}\) It is now believed that the most abundant α1β2γ2 GABA\(_A\) receptor subtype comprises two copies of each of the α1- and β2-subunits together with a single γ2-subunit.\(^{41}\) The arrangement of the subunits within the pentamer was first studied by concatenation,\(^{42}\) an approach that involves physical linking of the cDNAs encoding two or more subunits prior to their ectopic expression with other subunits. Such studies have demonstrated a pentameric subunit arrangement of β-α-β-α-γ lying in an anticlockwise direction when viewed from the outside of the cell.\(^{43}\) With this information, it has been possible to use the 4Å structure of the Torpedo nACHR as a template to construct \textit{in silico} models of this most common GABA\(_A\) receptor subtype\(^{44,45}\) (Figures 3a and 3b). These models provide a means to explore the similarities and differences in the structure and function of different members of the GABA\(_A\) receptor subfamily.

The exploration of ligand recognition in the extracellular domains of the Cys-loop family of receptors has been continuing for almost four decades. In 2001, rejuvenation of interest in this area came from a somewhat unexpected source. The structure of a water-soluble acetylcholine binding protein (AChBP) from \textit{Lymnaea stagnalis} was determined at 2.7Å resolution,\(^{46}\) a structure that soon proved to be a valuable homolog of the extracellular segment of the nAChR and other members of the family. This protein was the first to be used as a template to model the extracellular domain of the α1β2γ2 GABA\(_A\) receptor.\(^{47}\) Together with the plethora of mutagenic data available in the literature at the time, this model furnished the first direct structural evidence that was compatible with the long-standing idea that GABA recognition sites were located at the β-α interfaces. In addition, it rationalized a great deal of experimental data which suggested that an allosteric site for the classical benzodiazepines lies in a similar position at the adjacent α-γ interface. In the case of the GABA activation sites, the current consensus is that the primary determinants of agonist recognition are found within at least six non-contiguous stretches (‘loops’) of amino acids in the extracellular domains of each subunit, loops A–C being contributed by the ‘principal’ subunit (β) and loops D–F by the neighboring ‘subordinate’ subunit (α, Figure 3c). Sequence comparisons of the ‘recognition loops’ in different subunits of the receptor superfamily reveals some homology. However, it is the structural divergence within these loops that provides the exquisite acuity of ligand recognition which differentiates the family members.

The value of this \textit{in silico} approach has proved significant. Not only does it allow visualization of the disposition of the amino acids involved in ligand recognition, but also, using theoretical ligand docking approaches, it becomes feasible to address receptor subtype-selective ligand design, an area that is of undisputed commercial interest.\(^{48}\) Since binding sites for both neurotransmitters and allosteric modulators occur at subunit-subunit interfaces, we must again consider the importance of the subunit arrangement within each pentameric receptor. As discussed above, there is considerable theoretical and experimental evidence to assume that the subunit arrangement of the α1β2γ2 receptor is secure. However, there is no \textit{a priori} reason to assume that less abundant receptors should adopt a similar pentameric architecture. What, for example, is the arrangement of subunits in receptor subtypes comprising αβδ-subunits? To address this question, atomic force microscopy (AFM) was recently used to investigate the α4β3δ subtype.\(^{49}\) The subunits were C-terminally tagged with different epitopes and, after ectopic expression and decoration with the appropriate antibodies, the receptor-antibody complexes were visualized by AFM. The results suggested a similar arrangement to the α1β2γ2 subtype with the δ-subunit simply replacing the γ-subunit within the pentamer. However, the possibility of heterogeneity in receptor assembly cannot be excluded and, for example, results from concatenation studies suggest that the δ-subunit may be a little more promiscuous than first suggested.\(^{50}\)

Comparison of the two receptor subtypes described above (α1β2γ2 and α4β3δ) is important from both a physiological and pharmacological perspective. During the last several years, it has become clear that there are two major types of GABA\(_A\) receptor-mediated inhibitory responses i.e. phasic and tonic.\(^{51}\) Phasic inhibition results from activation of GABA\(_A\) receptors that are localized primarily to the synapse, such as the abundant α1β2γ2 subtype. Tonic transmission is mediated by less abundant extrasynaptic receptors, including the α4β3δ subtype, that are thought to be activated by the low concentrations of the natural agonist which escape the efficient re-uptake machinery found in both neurons and glia. There is currently considerable interest in developing drugs that have differential effects on these two forms of inhibitory neurotransmission. Although the natural

Muscimol, a potent GABA\(_A\) agonist

Muscimol is a potent GABA\(_A\) receptor agonist and partial GABA\(_A\) receptor agonist. The compound inhibits memory retention via central GABA\(_A\) receptors and attenuates airway constriction via peripheral GABA\(_A\) receptors.

Figure 3 | Model of the α1β2γ2 GABA_A receptor structure

Two views of the receptor folding pattern are shown above. Each β2–α1 interface carries a GABA activation site. At one such interface the β2 subunit is colored blue and the α1 subunit is colored red; the other subunits are colored grey for simplicity.

c) Schematic representation of the ligand binding domain

i) Juxtaposition of the recognition loops

ii) Sequence format

The structural representations shown are compatible with Mokrab et al. (2007) where further detail can be found.
agonist, GABA, appears to be a full agonist at the $\alpha_1\beta_2\gamma_2$ receptor, its conformationally restricted analog, THIP (also known as gaboxadol, Figure 1), is a partial agonist. In contrast, THIP is a full agonist at the $\alpha_4\beta_3\delta$ receptor where GABA acts as a partial agonist. Interestingly THIP exhibits hypnotic properties53 which are functionally quite distinct from those seen with the most widely used hypnotics, namely zopiclone and the α_1-selective agents, zolpidem and zaleplon. The latter compounds facilitate phasic inhibition by interacting with classical benzodiazepine-sensitive receptors at the synapse. THIP appears to produce its effects by modulating tonic inhibition mediated by extrasynaptic receptors,53 which may also be selective targets for general anesthetics.

Modulators of GABA\textsubscript{A} Receptor Function

The Benzodiazepines

The therapeutic importance of the benzodiazepines has been a significant impetus to GABA\textsubscript{A} receptor research. Classical benzodiazepines potentiate agonist-mediated activation of the GABA\textsubscript{A} receptor by causing a parallel leftward shift of the GABA concentration-response curve. In 1976, the discovery of saturable, high affinity binding sites for $[^{3}H]$-diazepam in the brain54,55 provided an important experimental tool for their study. All of the overt effects of the benzodiazepines: sedative, anxiolytic, anticonvulsant, muscle relaxant and amnestic, are mediated by GABA\textsubscript{A} receptors. However, not all the GABA\textsubscript{A} receptors recognize the benzodiazepines. The particular α-subunit isoform present within an individual GABA\textsubscript{A} receptor subtype is the primary determinant of benzodiazepine recognition (Table 2). If the α_1-subunit of the most common GABA\textsubscript{A} receptor ($\alpha_1\beta_2\gamma_2$) is replaced by α_4 or α_6 the receptor fails to recognize the classical benzodiazepines. It is now clear from both biochemical and mutational analysis that this insensitivity can be attributed to a single amino acid substitution in the extracellular N-terminal domain: a histidine (H101) in the α_1, α_2, α_3- and α_5-subunits is replaced by an arginine residue in α_4 and α_6.56,57 When receptors containing the former subunits are expressed with a β- and γ_2-subunit, all are recognized by the classical benzodiazepines. However, several agents differentiate between the subtypes on the basis of the particular α-subunit isoform present in the pentamer. The first of these compounds to be identified was the triazolopyridazine CL 21887258 (Figure 4), which is related to the recently introduced hypnotic, zaleplon. Similarly β-carboline-3-carboxylic acid esters also show a preference for certain α-subunit-containing receptors.57 Zolpidem (Figure 4), currently the most widely prescribed hypnotic in the USA, has been shown to have high affinity for α_1-containing receptors, lower affinity for receptors carrying α_2 or α_3 very low affinity for those containing α_2.61 (Table 2) and no observable interaction with receptors which contain the α_4- or α_6-subunits.

Using knockin (KI) technology, the importance of the α-subunit histidine-arginine substitution has been turned into an advantage. The exquisite specificity of this switch dictates that, by replacing the α_1 histidine with an arginine (H101R) in the germ line, the KI adult animals will differ from their wild-type counterparts only in the ability of their α_1-containing receptors to recognize the benzodiazepines. Thus, it was expected that characterization of the knockin mouse phenotype would allow the complex pharmacological effects of benzodiazepines to be dissected based on their interactions with specific GABA\textsubscript{A} receptor subtypes. Extensions of this approach have proved particularly valuable; it is now clear that the α_1-subunit is responsible for the sedative, anterograde amnestic and some of the anticonvulsant effects of the benzodiazepines62,63 whereas the α_2-subunit has been associated with their anxiolytic actions.64 Not all of the results are clear cut; for example, the pharmacodynamic profile of the α_3-selective ligand, TP003, suggests a contribution of this subunit to both anxiolytic and anticonvulsant effects.65,66 Also, receptors containing the α_5-subunit have been implicated in learning and memory processes.67 This approach has been significantly advanced recently using conditional knockin studies, which have revealed selective changes in the ability of GABA\textsubscript{A} receptors within particular cell groups to recognize the hypnotic, zolpidem.68 Unfortunately, attempts to delineate the functional importance of individual GABA\textsubscript{A} receptor subunits using gene knockout technology have proved frustrating. It is clear that ablation of subunit expression frequently results in compensatory changes in the expression of other subunits, providing significant challenges in assigning specific responsibility for the resulting phenotype.58

Perhaps one of the most interesting phenomenological observations to arise from studies of benzodiazepine interactions with the GABA\textsubscript{A} receptors has been the development of the inverse agonist concept. Non-benzodiazepine ligands were

Table 2 | Affinity of benzodiazepine site ligands for GABA\textsubscript{A} receptor subtypes

<table>
<thead>
<tr>
<th>Compound</th>
<th>$\alpha_1\beta_2\gamma_2$</th>
<th>$\alpha_2\beta_2\gamma_2$</th>
<th>$\alpha_3\beta_2\gamma_2$</th>
<th>$\alpha_4\beta_2\gamma_2$</th>
<th>$\alpha_5\beta_2\gamma_2$</th>
<th>$\alpha_6\beta_2\gamma_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diazepam</td>
<td>16.1</td>
<td>16.9</td>
<td>17.0</td>
<td>>10,000</td>
<td>14.9</td>
<td>>10,000</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>1.3</td>
<td>1.7</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>>10,000</td>
</tr>
<tr>
<td>Triazolam</td>
<td>1.8</td>
<td>1.2</td>
<td>3.0</td>
<td>-</td>
<td>1.2</td>
<td>-</td>
</tr>
<tr>
<td>Brexazenil</td>
<td>1.2</td>
<td>1.2</td>
<td>1.3</td>
<td>-</td>
<td>2.4</td>
<td>-</td>
</tr>
<tr>
<td>Flumazenil</td>
<td>1.0</td>
<td>1.1</td>
<td>1.5</td>
<td>107</td>
<td>0.4</td>
<td>90</td>
</tr>
<tr>
<td>Ro 15-4513</td>
<td>10.4</td>
<td>5.5</td>
<td>7.8</td>
<td>5.0</td>
<td>0.5</td>
<td>5.1</td>
</tr>
<tr>
<td>CL 218872</td>
<td>130</td>
<td>1820</td>
<td>1530</td>
<td>>10,000</td>
<td>490</td>
<td>>10,000</td>
</tr>
<tr>
<td>β-CCM</td>
<td>1.7</td>
<td>6.5</td>
<td>4.1</td>
<td>-</td>
<td>27</td>
<td>2050</td>
</tr>
<tr>
<td>Zolpidem</td>
<td>17</td>
<td>291</td>
<td>357</td>
<td>-</td>
<td>>15,000</td>
<td>-</td>
</tr>
</tbody>
</table>

(Bold text denotes compounds available from Tocris at time of publication)
discovered that were able to displace a radiolabeled benzodiazepine from its binding sites. One of the first of these was ethyl β-carboline-3-carboxylate (β-CCE) which was shown to have effects that were diametrically opposed to those of the classical benzodiazepines e.g. it is proconvulsant. This led to a new terminology; β-CCE became known as an inverse agonist with the classical benzodiazepines then being classified as agonists.\(^{69,70}\) In vitro electrophysiological experiments using inverse agonists show that they shift the GABA concentration-response curve to the right, decreasing the potency of the natural transmitter. Thus, while the agonist benzodiazepine site ligands increase channel opening frequency, the inverse agonists decrease it.\(^7\) The full efficacy spectrum is found within the β-carboline series: the ethyl ester is proconvulsant and thus acts as a partial inverse agonist, the propyl ester is essentially devoid of efficacy leading it to be termed an antagonist,\(^72\) while aromatic substitution in the A ring produces agonists with similar properties to the classical benzodiazepines\(^73\) (Figure 4). The therapeutic potential afforded by the inverse agonist concept has not escaped the attention of the pharmaceutical industry with the development of partial inverse agonists selective for α5-containing receptor subtypes as cognition enhancers.\(^74\)

Steroids

The observation that 5α-pregnan-3α-ol-11,20-dione (alphaxalone; Figure 5), a synthetic steroidal anesthetic, was able to enhance stimulation-evoked inhibition produced by GABA\(_A\) receptor agonists in rat cuneate nucleus slices,\(^75\) was the first evidence for allosteric steroid sites on these receptors. Subsequent voltage clamp studies conducted on both neurons and adrenomedullary chromaffin cells\(^76,77\) confirmed the stereoselective activity of the progesterone metabolites 5α-pregnan-3α-ol-20-one (allopregnanolone), 5β-pregnan-3α-ol-20-one (pregnanolone) and 5α-pregnan-3α,21-diol-20-one (allotetrahydrodeoxycorticosterone). Mechanistically, the action of these compounds appeared to be similar to that of the barbiturates which, at low concentrations, potentiate the effects of GABA by increasing channel open times and, at higher concentrations, directly activate the receptor.\(^78–82\) Later studies revealed that the sites of barbiturate and steroid action are distinct.\(^83\) Conserved residues within the α- and β-subunit membrane spanning domains of the α1β2γ2 receptor, which are important for both steroid facilitation and direct activation, have been identified.\(^84\)
Studies with ectopically expressed receptors comprising αβγ-subunits demonstrated limited impact of subunit composition on the functional effects of the steroids. At putative extrasynaptic receptors, where δ replaces the γ-subunit, there is evidence for increased steroid potency. However, these observations may be explained, at least in part, by the reduced efficacy of the endogenous neurotransmitter, GABA, at these receptor subtypes. There have been many literature reports to demonstrate that the potency of steroids varies in different brain regions and there is also evidence to suggest that the observed effects may be influenced by changes in receptor phosphorylation and modulation of enzymatic activity in the steroid metabolic pathways. This functional complexity is amplified further by normal physiological fluctuations in steroid levels associated with, for example, pregnancy and the ovarian cycle. These can lead to altered patterns of subunit expression that may contribute to the mood swings that are associated with these events.

General Anesthetics

It is now clear that GABA_α receptors play a significant role in general anesthesia. Many of the receptor subtypes are sensitive to clinically relevant concentrations of general anesthetics and exhibit the appropriate stereospecificity. The characteristics of these agents are diffuse; they exhibit sedative, hypnotic, analgesic and amnestic properties in addition to producing a loss of mobility. This multiplicity of effects, together with their structural diversity, has meant that it is very difficult to dissect the actions of general anesthetics at the molecular level. One agent, ketamine, mainly affects glutamatergic excitatory responses mediated by NMDA receptors and there is no evidence that the older anesthetics, nitrous oxide and xenon, modulate GABAergic inhibition. The evidence for interactions of other inhalational and intravenous agents with the GABA_α receptors continues to grow. Since general anesthetics are hydrophobic and need to access the CNS, it is perhaps not surprising that they target hydrophobic pockets within the transmembrane domains of the receptor. Initial evidence suggested that the inhalational anesthetics favored the α-subunits while in vitro and in vivo evidence has accumulated to suggest that intravenous anesthetics interact with the β-subunits. Over the past decade it has become increasingly clear that significant effects of the general anesthetics occur not by their ability to potentiate the fast phasic inhibition mediated by synaptically located receptors but as a result of their effects on receptors that are located extrasynaptically. The extrasynaptic α5β3γ2 receptor in the hippocampus is probably associated with the amnestic actions of many of these agents, while those receptors containing δ-subunits in the ventrobasal thalamic nucleus provide the intriguing link between the reversible loss of consciousness in man, a sleep-related phenomenon that is a primary characteristic induced by the general anesthetics. It is clear that the diversity

Figure 5 | Structures of selected compounds active at allosteric sites of GABA_α receptors

- **Allopropregnanolone**
 - 3β-hydroxy-5α-pregnan-20-one
 - (Cat. No. 3653)

- **Alphaxalone**
 - (Cat. No. 3046)

- **Etomidate**
 - (Cat. No. 1471)

- **Ganaxolone**
 - (Cat. No. 2531)

- **17-PA**
 - (Cat. No. 2681)

- **Pentobarbitone**

- **Pregnanolone**
 - 3α-hydroxy-5β-pregnan-20-one
 - (Cat. No. 3652)

- **Propofol**
 - (Cat. No. 0939)

(Bold text denotes compounds available from Tocris at time of publication)
of agents and targets provide valuable clues that must be addressed systematically to optimize the potential for development of novel anesthetic agents.96

Alcohol

The receptors responsible for the pharmacological effects of ethanol have been the subject of much speculation but there are only a small number of putative targets that are responsive to low concentrations of ethanol (< 20 mM). Initial observations of altered ethanol-induced behaviors in δ-subunit knockout mice27 were followed by in vitro studies of recombinant GABA_δ receptors. There was significant excitement when it was reported that agonist activation of δ-containing GABA_δ receptors could be facilitated by 10 mM ethanol;99,100 however, replication of this response has not proved possible and these discrepancies remain unexplained.100 It has been suggested that many of the in vivo effects of ethanol may be attributed to indirect effects arising from its ability to increase levels of several endogenous steroids which, in turn, can potentiate GABA_δ receptor-mediated responses. Evidence in favor of this idea comes from observations that, not only do the consequential effects of ethanol correlate well with an increase in steroid levels, but they are also inhibited by blockers of steroid synthesis.101

Phosphorylation may again play a significant role since it has been noted that in PKCδ knockout mice, the pharmacological effects of ethanol are reduced as are the ataxic responses to both pentobarbital and pregabalin. Since the flunitrazepam response remained intact in these animals, it was suggested that the overt effects were mediated by benzodiazepine insensitive GABA_δ receptors. Supplementary studies showed that the PKCδ-dependent effects of ethanol could be observed in ectopically expressed α4β3δ receptors.102 Thus, assignment of the effects of ethanol to specific GABA_δ receptors remains enigmatic.

GABA_δ Receptors (Previously Classified as GABA_c)

Although the receptors that were originally designated as GABA_c are now considered to be members of the GABA_δ family,4 it is useful to highlight their distinguishing features. These receptors were originally classified on the basis of their unique pharmacology. The natural agonist, GABA, was reported to be about an order of magnitude more potent at this subclass than at other GABA_δ receptors and, although CACA activated this receptor, this agent was not recognized by either the GABA_δ or GABA_c classes (Figure 1). GABA_δ receptor responses were not inhibited by bicuculline but, like the GABA_δ receptors, they were blocked by picROTOXin. A selective GABA_δ receptor antagonist, 1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid7 (TPMPA, Figure 2) was later identified. Additional pharmacological differences from the GABA_δ receptors included its lack of modulation by the benzodiazepines, barbiturates or neuroactive steroids. Receptors displaying these characteristics were shown to have a restricted distribution, initially being found in the spinal cord and subsequently in the retina.6,103 The source from which the first ρ-subunit was cloned.104 Three homologous ρ-subunits, ρ1 to ρ3, have now been identified. These can be expressed as either homomers or heteromers105,106 and the ectopically expressed receptors exhibit the pharmacological characteristics of the elusive GABA_δ receptors. There is only limited evidence that the ρ-subunits co-assemble with any of the other GABA_δ receptor subunits.107 The genes encoding the p1- and p2-subunits are found on chromosome 6 in humans, and are thus distinct from the clusters of GABA_δ receptor subunit genes which are

Alphaxalone, a direct activator and potentiator of GABA_α

Cat. No. 3046

Alphaxalone is a neurosteroid anesthetic that directly activates and potentiates the GABA_α receptor-activated membrane current (I_{GABAA}). Efficacy, but not potency, of this compound is determined by the alpha subunit of the receptor (EC_{50} values are 1.4, 1.8, 2.1, 2.4 and 2.5 μM for α1β1γ3, α1β1γ1, β1γ1, α2β1γ2L and α1β1γ2L isoforms respectively).

TPMPA, a selective GABA_δ antagonist

Cat. No. 1040

TPMPA is a selective, competitive GABA_δ antagonist which exhibits only minimal effects on GABA_α and GABA_γ receptors (Kᵢ values are 2.1 μM (antagonist), 320 μM (antagonist) and EC_{50} ~ 500 μM (weak agonist) respectively). It displays 8-fold selectivity for human recombinant p1 receptors over ρ2 receptors and blocks the paired-pulse depression component of inhibitory post-synaptic currents in vitro.

RuBi-GABA, excitable by visible wavelength

Cat. No. 1040

RuBi-GABA (Ruthenium-bipyridine-triphenylphosphine caged GABA) is excited by visible wavelengths and has two-photon uncaging capabilities. It provides greater tissue penetration, less phototoxicity, faster photorelease kinetics and better spatial resolution than UV light-sensitive caged compounds. Following photolysis, the compound produces GABA receptor-mediated currents in pyramidal neurons in vitro and displays no effect on endogenous GABAAergic or glutamatergic transmission at concentrations effective for uncaging.

GS 39783 is a positive allosteric modulator of GABA_B receptor function. It potentiates the effects of GABA on [35S]GTPγS binding at recombinant and native GABA_B receptors (EC₅₀ values are 2.1 and 3.1 μM respectively). The compound decreases cocaine self-administration, blocks the rewarding properties of nicotine and produces anxiolytic-like activity without the side effects associated with baclofen or benzodiazepines in vivo.

The GABA_B Receptor

The other major class of GABA receptors is the metabotropic (G-protein-coupled) GABA_B receptor. These exhibit a distinct ligand recognition profile to the GABA_A receptor family,⁴ and are differentially distributed within the mammalian CNS.²⁰⁸ Functionally they inhibit adenylyl cyclase activity¹⁰⁹ and presynaptic calcium channels, decreasing transmitter release,¹⁰⁰ and activate postsynaptic potassium channels, producing the late inhibitory postsynaptic potential.¹¹¹

Distribution and Function

The initial observation that GABA inhibited the release of norepinephrine from rat atria in vitro, an effect not blocked by biccuculline methobromide but mimicked by (R)-baclofen, provided the seminal evidence to distinguish the GABA_B receptor from more familiar members of the GABA_A receptor family.⁴ Subsequent studies, using both functional and radioligand binding techniques, have further refined the structure-activity profile at GABA_B receptors¹¹² (Figures 1 and 2). Although the receptor is widely distributed within the mammalian CNS it is generally found at lower densities than GABA_A receptors, and exhibits a distinct distribution: the highest concentrations being found in the molecular layer of the cerebellum, the frontal cortex and certain thalamic nuclei.¹⁰⁸ The receptor is also found in the periphery where its activation modulates autonomic control of the intestine and decreases esophageal reflux.^{112,113} The receptor is coupled to adenylyl cyclase via G_i and G_q proteins. While the consequences remain poorly defined, activation of presynaptic GABA_B receptors also leads to the inhibition of high voltage-activated Ca²⁺ channels, an effect that is mediated by the G protein βγ subunits. This results in decreased transmitter release and possibly also limits synaptic vesicle recruitment to the active zone.¹¹⁴

GABA activation of postsynaptic GABA_B receptors produces hyperpolarization via the modulation of inwardly rectifying K⁺ type K⁺ channels¹¹⁵ that mediate the late phase of the inhibitory postsynaptic potential.

Molecular Characterization

The molecular characterization of the GABA_B receptor was achieved in 1997 when the availability of specific high affinity antagonists allowed the expression cloning of the GABA_{B1} subunit.¹¹⁶ Subsequent studies demonstrated that while this protein showed many of the expected characteristics, when expressed ectopically, it coupled poorly to its effector machinery, and exhibited a remarkably low affinity for agonists compared to the native receptor; it appeared to be retained within the endoplasmic reticulum.¹¹⁷ Subsequent studies revealed the identity of an additional subunit, GABA_{B2},¹¹⁸⁻¹²⁰ which interacts with the GABA_{B1} subunit C-terminus, masking the ER retention signal of the GABA_{B1} subunit¹²¹ and facilitating the trafficking of the GABA_{B1} subunit to the cell surface. This provided the first secure evidence of receptor dimerization.

The GABA_{B1} receptor belongs to the class C of the GPCRs, together with the metabotropic glutamate receptors mGlu1–8 and the calcium-sensing receptor.¹²² Each subunit comprises a large N-terminal extracellular domain exhibiting the venus fly-trap motif, followed by 7-transmembrane helices and an intracellular C-terminus. Two splice variants for the GABA_{B1} subunit are known; they are encoded by the same gene and arise by alternate promoter usage to produce GABA_{B1α} and GABA_{B1β}. These differ only in their N-terminal domains, GABA_{B1α} contains a repeat of a conserved protein binding motif, so-called ‘sushi domains’, that are lacking in GABA_{B1β}; the first 147 amino acids of GABA_{B1α} are replaced by 18 amino acids in GABA_{B1β}.

While both subunits within the GABA_B heterodimer exhibit the venus fly-trap motif at the extracellular N-terminus, it is the GABA_{B1α} subunit that is responsible for both agonist and antagonist recognition; the residues responsible are not conserved in the GABA_{B1β} subunit.¹²³ Within this recognition domain there is also a serine residue that appears to be responsible for the ability of the

Rac BHFF, a potent, selective GABA_B positive allosteric modulator

Cat. No. 3313

Rac BHFF is a potent and selective GABA_B receptor positive allosteric modulator that increases the potency and efficacy of GABA (> 15-fold and > 149% respectively). The compound exhibits anxiolytic activity in vivo and is orally active.

receptor to sense Ca2+ concentrations.126 While the GABA\textsubscript{B2} subunit is not primarily responsible for agonist recognition, its presence markedly increases the agonist affinity of the GABA\textsubscript{B1} subunit.127 The GABA\textsubscript{B2} subunit mediates G protein-coupling, the second intracellular loop being particularly important.128,129 although it is clear that GABA\textsubscript{B1} is important in facilitating this process. It is the GABA\textsubscript{B1} subunit that appears to be the interaction site for an increasing family of positive allosteric modulators130 (Figure 6), where binding occurs within the transmembrane domain131 to augment agonist tone while exhibiting no direct agonist activity.132

The restricted molecular heterogeneity found in the GABA\textsubscript{A} receptor population has proved a significant frustration, since ectopic expression studies have failed to provide support for the varied functional responses ascribed to these receptors \textit{in vivo}.133 Knockout studies targeting GABA\textsubscript{A\beta}\textsubscript{1} or GABA\textsubscript{A\beta}\textsubscript{3} have not relieved these difficulties, both deletions producing similar phenotypes, although each compromised the expression of the conjugate subunit.134,135 Functional distinctions between the GABA\textsubscript{A\beta}\textsubscript{1} subunit isoforms have started to emerge suggesting that the GABA\textsubscript{A\beta}\textsubscript{1\alpha} isoform is primarily associated with the heteroreceptors controlling glutamate release.136–139 It has been suggested that this differential cellular localization may be associated with the presence of the sushi repeats, present in GABA\textsubscript{A\beta}\textsubscript{1} but not in GABA\textsubscript{A\beta}\textsubscript{2\alpha}, that are known to be important in protein-protein interactions in other environments.140 Interestingly it has recently been shown that a soluble truncated form of the GABA\textsubscript{A\beta}\textsubscript{1\alpha} subunit, named GABA\textsubscript{A\beta}\textsubscript{1\alpha\gamma}, exhibits nanomolar affinity for neuronal membranes. It is identical to the first 157 amino acids of the GABA\textsubscript{A\beta}\textsubscript{1\alpha} subunit and contains the sushi repeats together with a 72 amino acid C-terminal extension with no homology to other known proteins. In its presence both basal and stimulated glutamate release are decreased, but GABA\textsubscript{A} receptor function at presynaptic autoreceptors or postsynaptic receptors remains unaffected.141

Clinical Potential

Baclofen remains the only clinically available agent that targets the GABA\textsubscript{A} receptor. It was introduced into clinical practice in 1972 long before the discovery of the GABA\textsubscript{A} receptor and remains the intervention of choice in spasticity associated with multiple sclerosis and cerebral palsy. Baclofen exhibits a challenging side effect profile on systemic administration, producing drowsiness, nausea, muscle weakness and mental confusion largely due to poor brain penetration necessitating the use of high oral doses.142 The muscle relaxant effects mediated within the spinal cord can be secured by intrathecal administration, allowing a marked reduction in dose, thus limiting the systemic effects and the development of tolerance.143 Baclofen also exhibits antinoceptive properties at the spinal level, which again allows local administration,144 however significant analgesia is also mediated within the ventrobasal nucleus of the thalamus,145 a site which requires systemic administration. The analgesic effects of baclofen currently have limited application in humans.146

The early specific GABA\textsubscript{A} receptor antagonists suffered from a limited potency, with phaclofen, for example, displaying an affinity of only 100 μM. A number of selective, high affinity and systemically active antagonists are now available (Figure 2), that may have significant clinical potential in absence epilepsy.142 Mice overexpressing the GABA\textsubscript{A\alpha} isoform exhibit characteristics associated with atypical absence epilepsy.147 In contrast, recent reports suggest that impaired GABA\textsubscript{A} receptor function may contribute to repetitive firing in human temporal lobe epilepsy tissue.148 The first exploration of GABA\textsubscript{A} receptor antagonists clinically was an open trial with SGS 742 (CGP 36742) in mild cognitive deficit in man.149 While the initial results appeared promising further clinical reports have not reached the literature. Recent studies suggest that mechanistically phospho-protein...
NOC 711, a selective inhibitor of GAT-1

\[
\text{HO} - \text{CO} - \text{N} - \text{O} - \text{N} - \text{CH}_3
\]

Cat. No. 1779

NOC 711 is a potent and selective inhibitor of GABA uptake by GAT-1 (IC\(_{50}\) values are 0.04, 171, 1700 and 622 \(\mu M\) for hGAT-1, rGAT-2, hGAT-3 and hBGT-1 respectively). The inhibitor displays anticonvulsant activity following systemic administration in vivo.

kinase A (pPKA) plays a significant role in the effects of this antagonist in the Morris water maze.\(^{150}\)

It has been known for some time that GABA\(_A\) receptor activation effectively reduces the craving for addictive drugs, first demonstrated as a reduction in cocaine self-administration in rats,\(^{151}\) and similar findings have emerged with other drugs of abuse.\(^{142}\) Positive allosteric modulators at the receptor may prove to be a more attractive means of control. These agents could reasonably be expected to facilitate GABA\(_A\) receptor mediated tone circumventing the side effect profile associated with the use of systemic agonists. Indeed, recent studies suggest that compounds of this type significantly reduce cocaine self-administration in rats\(^{152,153}\) (Figure 5), with similar approaches providing some support for their potential as anxioselectics.\(^{154}\)

The GABA\(_A\) receptors remain somewhat enigmatic, promissory notes of significant therapeutic potential have not thus far materialized and it has been argued that the lack of readily differentiable receptor subtypes has limited the opportunity for discrete drug targeting. Evidence for their functional importance continues to expand with recent studies highlighting their impact on both the tegmental pedunculopontine nucleus, important in the acute rewarding effects of the opiates\(^{156}\) and orexin neurons, associated with sleep/wakefulness cycles.\(^{196}\) Clinical applications remain elusive; perhaps the allosteric modulators may yet prove as valuable in the modulation of tonic activity at the GABA\(_A\) receptors as the benzodiazepines within the GABA\(_A\) receptor family. Recent development of novel GABA\(_A\) receptor agonists, the structure of which effectively restricts them to the peripheral compartment, are currently under investigation for intervention in gastroesophageal reflux in man, after proving efficacious and importantly devoid of the baclofen-associated central side effects in preclinical studies.\(^{157}\)

Conclusions

Despite the overwhelming representation of the GPCRs in the human genome, it is the ionotropic receptor for the major inhibitory neurotransmitter GABA that has achieved the most visibility to date. Its serendipitous exploitation within the clinical arena has stimulated a plethora of intriguing insights into the mechanisms by which communication within the nervous system is achieved and the nuances of modulation which provide opportunities for further refinement of pharmacological intervention. The paucity of molecular heterogeneity exhibited by the GABA\(_A\) receptors has proved problematic for specific drug targeting. The functional characterization of this receptor in the mammalian system was predicted to lead to significant clinical developments. Although this goal has not yet been achieved, recent research provides novel opportunities for therapeutic intervention. The next decade will undoubtedly prove exciting.

References

GABA Receptor Compounds Available from Tocris

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Product Name</th>
<th>Primary Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>GABA_ Receptors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agonists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0344</td>
<td>GABA</td>
<td>Endogenous agonist</td>
</tr>
<tr>
<td>0235</td>
<td>Isoguvacine hydrochloride</td>
<td>Selective GABA_A agonist</td>
</tr>
<tr>
<td>3250</td>
<td>L-838.417</td>
<td>Subtype-selective GABA_A partial agonist</td>
</tr>
<tr>
<td>0289</td>
<td>Muscimol</td>
<td>Potent GABA_ agonist</td>
</tr>
<tr>
<td>0181</td>
<td>TACA</td>
<td>GABA_A agonist. Also GABA-T substrate and GABA uptake inhibitor</td>
</tr>
<tr>
<td>0807</td>
<td>THIP hydrochloride</td>
<td>GABA_A agonist</td>
</tr>
<tr>
<td>0180</td>
<td>ZAPA sulfate</td>
<td>Agonist at 'low affinity' GABA_A receptor. More potent than GABA_A/muscimol</td>
</tr>
<tr>
<td>Antagonists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0130</td>
<td>(+)-Bicuculline</td>
<td>Potent GABA_A antagonist</td>
</tr>
<tr>
<td>2503</td>
<td>(-)-Bicuculline methiodide</td>
<td>Water-soluble GABA_A antagonist</td>
</tr>
<tr>
<td>0109</td>
<td>(-)-Bicuculline methobromide</td>
<td>Water-soluble GABA_A antagonist</td>
</tr>
<tr>
<td>0131</td>
<td>(-)-Bicuculline methochloride</td>
<td>Water-soluble GABA_A antagonist</td>
</tr>
<tr>
<td>3109</td>
<td>Furosemide</td>
<td>GABA_A receptor antagonist. Also Na(^+)/Ca(^2+)/K(^+) cotransporter blocker</td>
</tr>
<tr>
<td>1128</td>
<td>Picrotoxin</td>
<td>GABA_A receptor antagonist</td>
</tr>
<tr>
<td>2143</td>
<td>SCS</td>
<td>Selective GABA_A receptor antagonist; (\beta)1-subunit-selective</td>
</tr>
<tr>
<td>1262</td>
<td>SR 95531 hydrobromide</td>
<td>Selective, competitive GABA_A receptor antagonist</td>
</tr>
<tr>
<td>2905</td>
<td>TB 21007</td>
<td>(\alpha)5-selective GABA_B inverse agonant</td>
</tr>
<tr>
<td>2745</td>
<td>U 93631</td>
<td>GABA_B receptor antagonist</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3568</td>
<td>Bretazenil</td>
<td>Benzodiazepine partial agonist</td>
</tr>
<tr>
<td>0405</td>
<td>(-)-CCB</td>
<td>Benzodiazepine inverse agonist, putative endogenous ligand</td>
</tr>
<tr>
<td>2467</td>
<td>CGS 20625</td>
<td>Selective central benzodiazepine receptor partial agonist</td>
</tr>
<tr>
<td>0456</td>
<td>Chlormezanone</td>
<td>Skeletal muscle relaxant</td>
</tr>
<tr>
<td>1709</td>
<td>CL 218872</td>
<td>Benzodiazepine agonist</td>
</tr>
<tr>
<td>2805</td>
<td>Diazepam</td>
<td>Acts at the benzodiazepine modulatory site</td>
</tr>
<tr>
<td>0505</td>
<td>Dihydroergotoxine mesylate</td>
<td>Binds to GABA_A receptor Cl(-)/channel; allosteric modulator of benzodiazepine site</td>
</tr>
<tr>
<td>3033</td>
<td>DMCM hydrochloride</td>
<td>Benzodiazepine inverse agonist</td>
</tr>
<tr>
<td>0554</td>
<td>FG 7142</td>
<td>Benzodiazepine inverse agonist</td>
</tr>
<tr>
<td>0658</td>
<td>FGIN-1-27</td>
<td>Potent, specific ligand for mitochondrial DBI receptor (TSPO)</td>
</tr>
<tr>
<td>0659</td>
<td>FGIN-1-43</td>
<td>Potent, specific ligand for mitochondrial DBI receptor</td>
</tr>
<tr>
<td>1328</td>
<td>Flumazenil</td>
<td>Benzodiazepine antagonist</td>
</tr>
<tr>
<td>0770</td>
<td>GBLD 345</td>
<td>High affinity benzodiazepine agonist</td>
</tr>
<tr>
<td>2174</td>
<td>Hispidulin</td>
<td>Partial positive allosteric modulator at the benzodiazepine receptor</td>
</tr>
<tr>
<td>Cat. No.</td>
<td>Product Name</td>
<td>Primary Action</td>
</tr>
<tr>
<td>1327</td>
<td>L-655,708</td>
<td>Selective for (\alpha)5-containing GABA_A receptors</td>
</tr>
<tr>
<td>3087</td>
<td>Lorazepam</td>
<td>Acts at the benzodiazepine modulatory site</td>
</tr>
<tr>
<td>2832</td>
<td>Midazolam hydrochloride</td>
<td>Benzodiazepine agonist</td>
</tr>
<tr>
<td>0670</td>
<td>PK 11195</td>
<td>Antagonist at peripheral benzodiazepine receptors</td>
</tr>
<tr>
<td>1997</td>
<td>Ro 15-4513</td>
<td>Benzodiazepine partial inverse agonant</td>
</tr>
<tr>
<td>1995</td>
<td>Ro 19-4603</td>
<td>Benzodiazepine inverse agonant</td>
</tr>
<tr>
<td>3655</td>
<td>Zaleplon</td>
<td>Benzodiazepine agonist</td>
</tr>
<tr>
<td>1994</td>
<td>ZK 93423 hydrochloride</td>
<td>Potent benzodiazepine agonist</td>
</tr>
<tr>
<td>1996</td>
<td>ZK 93426 hydrochloride</td>
<td>Potent, competitive benzodiazepine antagonist</td>
</tr>
<tr>
<td>0655</td>
<td>Zolpidem</td>
<td>Benzodiazepine agonist</td>
</tr>
<tr>
<td>1094</td>
<td>Zopiclone</td>
<td>Benzodiazepine agonist</td>
</tr>
<tr>
<td>Modulators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3653</td>
<td>Allopregnanolone</td>
<td>GABA_A receptor positive allosteric modulator</td>
</tr>
<tr>
<td>3046</td>
<td>Alphaxalone</td>
<td>Direct activator and potentiator of GABA_A</td>
</tr>
<tr>
<td>0881</td>
<td>Chlormethiazole hydrochloride</td>
<td>Potentiates GABA_A receptor function</td>
</tr>
<tr>
<td>1471</td>
<td>Etomidate</td>
<td>GABA mimetic and GABA modulatory agent</td>
</tr>
<tr>
<td>2531</td>
<td>Ganaxolone</td>
<td>Potent, positive allosteric modulator of GABA_A receptors</td>
</tr>
<tr>
<td>3597</td>
<td>Indiplon</td>
<td>Subtype-selective GABA_A receptor positive allosteric modulator</td>
</tr>
<tr>
<td>1295</td>
<td>Loreclezole hydrochloride</td>
<td>Subtype-selective GABA_A receptor modulator</td>
</tr>
<tr>
<td>2738</td>
<td>Org 20599</td>
<td>Positive allosteric modulator and direct agonist of GABA_A receptors</td>
</tr>
<tr>
<td>2681</td>
<td>7-PA</td>
<td>Antagonist of neurosteroid potentiation and direct gating of GABA_A</td>
</tr>
<tr>
<td>3652</td>
<td>Pregnanolone</td>
<td>GABA_A receptor positive allosteric modulator</td>
</tr>
<tr>
<td>0830</td>
<td>Primidone</td>
<td>Potentiates GABA_A receptor function</td>
</tr>
<tr>
<td>1512</td>
<td>SB 205384</td>
<td>GABA_A receptor modulator</td>
</tr>
<tr>
<td>3620</td>
<td>Topiramate</td>
<td>GABA_A receptor positive allosteric modulator. Also GluR5 antagonist</td>
</tr>
<tr>
<td>1558</td>
<td>Tarazolate hydrochloride</td>
<td>Subtype-selective GABA_A allosteric modulator</td>
</tr>
<tr>
<td>2734</td>
<td>U 809843A</td>
<td>Positive allosteric modulator of GABA_A receptors</td>
</tr>
<tr>
<td>2733</td>
<td>U 90042</td>
<td>GABA_A receptor ligand</td>
</tr>
<tr>
<td>3048</td>
<td>Valeric acid</td>
<td>Positive allosteric modulator of GABA_A receptors</td>
</tr>
<tr>
<td>GABA_ Receptors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agonists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0417</td>
<td>(RS)-Baclofen</td>
<td>Selective GABA_A agonist</td>
</tr>
<tr>
<td>0796</td>
<td>(+)-Baclofen</td>
<td>Active enantiomer of Cat. No. 0417</td>
</tr>
<tr>
<td>0344</td>
<td>GABA</td>
<td>Endogenous agonist</td>
</tr>
<tr>
<td>0379</td>
<td>SKF 97541</td>
<td>Extremely potent GABA_A agonist</td>
</tr>
<tr>
<td>Cat. No.</td>
<td>Product Name</td>
<td>Primary Action</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>1245</td>
<td>CGP 35348</td>
<td>Brain penetrant, selective GABA<sub>agonist</sub></td>
</tr>
<tr>
<td>1247</td>
<td>CGP 46381</td>
<td>Brain penetrant, selective GABA<sub>agonist</sub></td>
</tr>
<tr>
<td>1246</td>
<td>CGP 52432</td>
<td>Potent, selective GABA<sub>agonist</sub></td>
</tr>
<tr>
<td>1088</td>
<td>CGP 54626 hydrochloride</td>
<td>Potent, selective GABA<sub>agonist</sub></td>
</tr>
<tr>
<td>1248</td>
<td>CGP 55845</td>
<td>Potent, selective GABA<sub>agonist</sub></td>
</tr>
<tr>
<td>0245</td>
<td>2-Hydroxysaclofen</td>
<td>Selective GABA<sub>agonist</sub>, antagonist, more potent than Cat. No. 0246</td>
</tr>
<tr>
<td>0178</td>
<td>Phaclofen</td>
<td>Selective GABA<sub>agonist</sub></td>
</tr>
<tr>
<td>0246</td>
<td>Saclofen</td>
<td>Selective GABA<sub>agonist</sub></td>
</tr>
<tr>
<td>0984</td>
<td>SCH 50911</td>
<td>Selective, competitive, orally active GABA<sub>agonist</sub></td>
</tr>
<tr>
<td>3313</td>
<td>rac BHFF</td>
<td>Potent, selective GABA<sub>agonist</sub>, positive allosteric modulator</td>
</tr>
<tr>
<td>1513</td>
<td>CGP 7930</td>
<td>Positive modulator at GABA<sub>B</sub> receptors</td>
</tr>
<tr>
<td>1514</td>
<td>CGP 13501</td>
<td>Positive modulator at GABA<sub>B</sub> receptors</td>
</tr>
<tr>
<td>2001</td>
<td>GS 39783</td>
<td>Positive modulator at GABA<sub>B</sub> receptors</td>
</tr>
</tbody>
</table>

GABA_B (GABA₅) Receptors

Agonists
- 0344 GABA: Endogenous agonist
- 0289 Muscimol: Partial GABA_B agonist
- 0181 TACA: GABA_B agonist

Antagonists
- 0379 SKF 97541: GABA_B antagonist, also potent GABA_A agonist
- 0807 THIP hydrochloride: GABA_B antagonist
- 1040 TPMPA: Selective GABA_B antagonist
- 0180 ZAPA sulfate: GABA_B antagonist

GABA Transporters
- 0206 β-Alanine: GABA uptake inhibitor (GAT-2 and -3). Also glycine receptor agonist
- 1296 CI 966: Selective inhibitor of GAT-1
- 0234 Guvacine: Specific GABA uptake inhibitor
- 0236 (±)-Nipecotic acid: GABA uptake inhibitor
- 2747 NNC 05-2090: GABA uptake inhibitor; moderately BGT-1 selective
- 1779 NNC 711: Selective inhibitor of GAT-1
- 0768 Riluzole: GABA uptake inhibitor. Also glutamate release inhibitor
- 1081 SKF 89976A: Potent GABA uptake inhibitor. Penetrates blood brain barrier
- 1561 (S)-SNAP 5114: GABA uptake inhibitor
- 0181 TACA: GABA uptake inhibitor. Also GABA_B agonist and substrate for GABA-T

Miscellaneous GABA
- 1814 N-ArachidonylgABA: Inhibits pain in vivo
- 0806 Gabapentin: Anticonvulsant. Increases brain GABA