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Schizophrenia is a severe mental disorder that affects approximately 1% of the population worldwide. The symptoms of this psychiatric condition can be divided into three broad categories: positive symptoms, such as 
hallucinations and delusions; negative symptoms, such as social withdrawal, diminished affective response and lack of interest; and cognitive symptoms, such as disordered speech, memory problems and attention deficits. 
Its etiology remains unknown, although there is evidence suggesting that schizophrenia results as a consequence of complex interactions between genetic factors and environmental influences. 

Schizophrenia has traditionally been considered a genetic disorder, 
with rates of heritability estimated at 73-90%. This hypothesis was 
strengthened by genome-wide association studies (GWAS) in the 
mid-2000s showing schizophrenia-associated genetic alterations that 
included large recurrent microdeletions, copy number variations, as 
well as rare chromosomal microdeletions and duplications, 
especially in neurodevelopmental pathways. These genomic studies 
also suggested that the risk of schizophrenia is associated with 
polygenic pathways involving thousands of common alleles, each 
with a very small effect. More recent GWAS have narrowed down the 
list of genetic loci potentially associated with schizophrenia. These 
genes include those encoding dopamine D2 (DRD2) and serotonin 
5-HT2A (HTR2A) receptors, as well as genes encoding proteins 
involved in glutamatergic neurotransmission, voltage-gated ion 
channels, and the signaling complex formed by activity-regulated 
cytoskeleton-associated scaffold protein (ARC) at the postsynaptic 
density. Schizophrenia-associated loci are not randomly distributed 
throughout genes of separate classes and function. On the contrary, 
they coincide with genes expressed in certain cell types and tissues. 
Schizophrenia associations are also enriched among genes 
expressed in tissues with important immune functions. 

Although genetics play a fundamental role in the etiology of schizophrenia, 
genetic aberrations are not the only factor responsible for this psychiatric 
phenotype. The concordance rates of schizophrenia for monozygotic twins, 
whose DNA sequences are ~100% identical, have been found to be about 
40 to 50%, which favors a significant contribution of environmental events in 
the development of schizophrenia. Epidemiological studies indicate that 
maternal infection with a wide variety of microbial agents, including influenza 
virus, increases the risk of developing schizophrenia in later life. Similarly, severe 
adverse life events during pregnancy, such as war, famine, and death of a close 
relative, have been associated with schizophrenia risk in the adult offspring. 
Animal models of maternal influenza viral infection and maternal stress support 
a uniform conclusion that schizophrenia-related physiological and behavioral 
changes in the offspring are related to inflammatory mediators found in maternal 
blood and amniotic fluid. Whether these proteins cross the placenta and act 
directly upon the fetal brain remains unknown. Nevertheless, these animal 
models have identified several cytokines as critical mediators of maternal 
immune activation, which has been suggested to induce dysbiosis of the 
offspring gut microbiota. These changes associated with prenatal insults affect 
schizophrenia-related phenotypes in the adult offspring. 

Environmental Events

Genetic Factors

The thalamus plays a fundamental role in the bidirectional 
flow of cellular signaling between cortical and subcortical 
brain areas. Pyramidal neurons are the principal source of 
glutamatergic (Glu) excitatory axon terminals in the 
cortex. Axons from neurons in the thalamus and from 
dopaminergic (DA) neurons in the mesencephalon 
innervate targets in the frontal cortex. An excessive 
response of pyramidal neurons in the frontal cortex has 
been proposed as a putative mechanism of psychosis. 
The release of dopamine from the ventral tegmental 
nucleus activates dopamine D1 and D2 receptors that 
increase the pyramidal neuronal response to glutamate. 
Serotonin (5-HT) release from the dorsal raphe activates 
cortical 5-HT2A receptors, promoting the release of 
glutamate. Antipsychotic drugs modulate the effects of 
both dopamine and serotonin, as well as block dopamine 
signaling in the substantia nigra, which has been 
implicated in movement disorders. Antipsychotics 
modulate the release of acetylcholine from the basal 
forebrain nucleus, and increase interneuron activity by 
blocking noradrenaline (NA) receptors in the locus 
coeruleus. Interneurons themselves in the frontal cortex 
regulate glutamate release and therefore the excitation of 
cortical pyramidal neurons. 

Susceptibility Genes Neural Circuits Associated with Schizophrenia 

Current and Emerging 
Targets for Schizophrenia

GAD67 GABA biosynthesis
IGSF9B Expressed in GABAergic neurons
DISC1 Cell proliferation and migration
GRIN2A Member of NMDA receptor complex
ACTN1 Member of NMDA receptor complex
GRIA1 Member of NMDA receptor complex
BAIAP2 Member of the ARC complex
NCKIPSD Dendritic spines
CACNA1I Synaptic plasticity
NLGN4X Synaptic plasticity
RIMS1 Presynaptic plasticity
DRD2 Neurotransmitter receptor
HTR2A Neurotransmitter receptor
GRM3 Neurotransmitter receptor
HSP90AA1 Glutamate neurotransmission
CLCN3 Voltage-gated chloride channel
MEF2C Transcription and neurogenesis

Glutamatergic Hypofunction
Glutamatergic hypofunction is one of the main hypotheses underlying the 
pathophysiology of schizophrenia. Noncompetitive N-methyl-D-aspartate (NMDA) 
receptor antagonists, such as phencyclidine (PCP) are used as pharmacological models 
of schizophrenia in mice and rats because of their capacity to evoke psychotic 
symptoms in humans, as well as deficits in sensorimotor gating resembling those 
observed in the disease. The use of NMDA-enhancing agents, such as glycine, 
D-Serine and sarcosine, has been proposed as a potential pharmacological tool to 
augment the therapeutic potential of currently available antipsychotic medications. 
Genes that form part of the postsynaptic NMDA receptor-PSD95 signaling complex 
have been associated with the etiology of schizophrenia. 
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Cell Signaling

A number of Gq protein-coupled receptors, including the serotonin 5-HT2A, metabotropic 
glutamate 5 (mGlu5), and acetylcholine muscarinic M1, have been proposed as direct 
targets of either antipsychotic drugs or drugs that induce antipsychotic-related behaviors 
in rodent models. Activation of Gq protein-coupled receptors elicits the phospholipase C 
(PLC)-catalyzed hydrolysis of phosphatidylinositol 4,5 bisphosphate (PIP2), which 
ultimately induces a transient increase in the concentration of intracellular calcium [Ca2+]i 
through the release of Ca2+ from the endoplasmic reticulum. 

Adding or removing phosphates is a fundamental mechanism for altering the shape and 
therefore the function of a protein. The MAPKs are a family of serine/threonine kinases that 
include extracellular signal-regulated kinases such as ERK1/2. The downstream effectors 
of MAPKs modulate a number of cellular functions, including cell cycle, transcriptional 
regulation, and apoptosis. Both G protein- and β-arrestin-mediated signaling cascades 
might lead to ERK activation. However, the sub-cellular distribution of activated ERK1/2 
downstream of these two pathways are different. Whereas phosphorylated ERK1/2 
mediated via heterotrimeric G protein signaling translocates into the nucleus, the 
phosphorylated ERK1/2 induced by β-arrestin remains in the cytoplasm. 
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Gi/o protein-coupled receptors, such as dopamine D2, 
metabotropic glutamate 2 (mGlu2), acetylcholine muscarinic M4, 
and α2A adrenergic, have been shown behave as direct targets 
of antipsychotic drugs. Activation of Gi/o protein-coupled 
receptors leads to both inhibition of adenylate cyclase activity by 
the Gαi subunit and positive regulation of K+ channels by the 
Gβγ subunit. This affects the conversion of adenosine triphosphate 
(ATP) to cyclic adenosine monophosphate (cAMP), and 
consequently the activity of protein kinase A (PKA). 

Adenylyl Cyclase

Regulation of gene transcription is considered to be one of the 
mechanisms involved in psychiatric disorders. Transcription 
factors such as cAMP response element binding protein (CREB) 
and nuclear factor kappa B (NF-κB) have roles in different 
processes of the brain that might be dysregulated in 
schizophrenia patients, such as neurogenesis, synapse 
regulation, neural migration and synaptic plasticity. 

p50 p65

IκBα IκBαIKK

SignalCytoplasm

NF-κB

p50 p65

NF-κB

p50 p65

NF-κB

Proteasome degradation

p50 p65

NF-κBNucleus

P P

Extracellular

Regulation of Gene Transcription

G protein-coupled receptors (GPCRs) were assumed to 
function as monomers. This model of receptor signaling is 
supported by the demonstration of G protein coupling via a 
single purified class A GPCR, such as the adrenergic β2 
receptor. However, it has been demonstrated that class C 
GPCRs, such as mGlu and GABAB receptors, function as 
dimers. Additionally, more recent findings support the 
hypothesis that family A GPCRs form heterodimers or even 
higher order oligomers. Examples of GPCR heterodimers/
heteromers potentially involved in schizophrenia and its 
treatment include 5-HT2A-mGlu2, dopamine D2-adenosine 
A2A, and µ-opioid-α2A-adrenergic receptor complexes.
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Covalent modifications of the N-termini of histones correlate 
with open or closed states of chromatin depending on the 
type of modification. Acetylation        of histone H3 
(H3ac) and histone H4 (H4ac) creates a more open 
chromatin architecture. Histone acetylation is catalyzed by 
histone acetyltransferases (HATs), and this modification can 
be reversed by the enzymatic action of histone deacetylases 
(HDACs), which fall into four different phylogenetic classes. 
Findings in preclinical models suggest that HDAC inhibitors 
might emerge as a new pharmacological approach to treat 
cognitive deficits in schizophrenia patients.
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